版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter1LimitsandTheirPropertiesLimits
Theword“l(fā)imit”isusedineverydayconversationtodescribetheultimatebehaviorofsomething,asinthe“l(fā)imitofone’sendurance”orthe“l(fā)imitofone’spatience.”Inmathematics,theword“l(fā)imit”hasasimilarbutmoreprecisemeaning.
Supposeyoudrive200miles,andittakesyou4hours.Thenyouraveragespeedis:Ifyoulookatyourspeedometerduringthistrip,itmightread65mph.Thisisyourinstantaneousspeed.1.1RatesofChangeandLimitsArockfallsfromahighcliff.Thepositionoftherockisgivenby:After2seconds:averagespeed:Whatistheinstantaneousspeedat2seconds?1.1RatesofChangeandLimitsforsomeverysmallchangeintwhereh=someverysmallchangeintWecanusetheTI-84toevaluatethisexpressionforsmallerandsmallervaluesofh.1.1RatesofChangeandLimits180164.16.00164.016.000164.0016.0000164.0002Wecanseethatthevelocityapproaches64ft/secashbecomesverysmall.Wesaythatthevelocityhasalimitingvalueof64ashapproacheszero.(Notethathneveractuallybecomeszero.)1.1RatesofChangeandLimitsThelimitashapproacheszero:01.1RatesofChangeandLimitsDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,1.1RatesofChangeandLimitsaLfDNE=DoesNotExistafL1L21.1RatesofChangeandLimitsDefinition:OneSidedLimitsLeft-HandLimit:ThelimitoffasxapproachesafromtheleftequalsLisdenotedRight-HandLimit:ThelimitoffasxapproachesafromtherightequalsLisdenoted1.1RatesofChangeandLimits1.1RatesofChangeandLimitsDefinition:Limitifandonlyif
and1.1RatesofChangeandLimitsDNE=DoesNotExistPossibleLimitSituationsafaf1.1RatesofChangeandLimits123412Atx=1:lefthandlimitrighthandlimitvalueofthefunction
doesnotexistbecausetheleftandrighthandlimitsdonotmatch!1.1RatesofChangeandLimitsAtx=2:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsAtx=3:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsLimitsGivenafunctionf(x),ifxapproaching3causesthefunctiontotakevaluesapproaching(orequalling)someparticularnumber,suchas10,thenwewillcall10thelimitofthefunctionandwriteInpractice,thetwosimplestwayswecanapproach3arefromtheleftorfromtheright.
LimitsForexample,thenumbers2.9,2.99,2.999,...approach3fromtheleft,whichwedenotebyx→3–,andthenumbers3.1,3.01,3.001,...approach3fromtheright,denotedbyx→3+.Suchlimitsarecalledone-sidedlimits.UsetablestofindExample1–FINDINGALIMITBYTABLES
Solution:Wemaketwotables,asshownbelow,onewithxapproaching3fromtheleft,andtheotherwithxapproaching3fromtheright.20Limits
IMPORTANT!Thistableshowswhatf(x)isdoingasxapproaches3.OrwehavethelimitofthefunctionasxapproachesWewritethisprocedurewiththefollowingnotation.x22.92.992.99933.0013.013.14f(x)89.89.989.998?10.00210.0210.212
Def:WewriteIfthefunctionalvalueoff(x)isclosetothesinglerealnumberLwheneverxiscloseto,butnotequalto,c.(oneithersideofc).
orasx→c,thenf(x)→L310HLimitsAsyouhavejustseenthegoodnewsisthatmanylimitscanbeevaluatedbydirectsubstitution.22LimitPropertiesTheserules,whichmaybeprovedfromthedefinitionoflimit,canbesummarizedasfollows. Forfunctionscomposedofaddition,subtraction,multiplication,division,powers,root,limitsmaybeevaluatedbydirectsubstitution,providedthattheresultingexpressionisdefined.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONSubstitute4forx.Substitute6forx.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONExample1FindExample2Find
Somealgebraicrulesoflimits1Example
Somealgebraicrulesoflimits2ExampleSomealgebraicrulesoflimits3ExampleExample3:Find
Example4Findifyoupluginsomeverysmallvaluesfor,youwillseethisfunctionapproaches.Anditdoes'ntmatterwhetherispositiveornegative,youstillget,lookatthegraphof
Thedenominatorispositiveinbothcases,
sothelimitisthesame.Example5
Becausetheright-handlimitisnotequaltotheleft-handlimit,thelimitdoesnotexist.Therearesomeveryimportantpointsthatweneedtoemphasizefromthelasttwoexamples.1)Iftheleft-handlimitofafunctionisnotequaltotheright-handlimitofthefunction,thenthelimitdoesnotexist.2)Alimitequaltoinfinityisnotthesameasalimitthatdoesnotexist,butsometimesyouwillseetheexpression"nolimit",whichservesbothpurposes.If,thelimit,technically,doesnotexist.3)Ifkisapositiveconstant,thenanddoesnotexist.4)Ifkisapositiveconstant,thenandExample6:Find
As
getsbiggerandbigger,thevalueofthefunctiongetssmallerandsmaller.Therefore,Example7:Find
It'sthesamesituationastheoneinExample6;asdecrease(approachesnegativeinfinity),thevalueofthefunctionincrease(approachesaero).Wewritehis,Somealgebraicrulesoflimits4Example8Find
Whenyouhavevariablesinboththetopandbottom,youcan'tjustplugintotheexpression.Youwillget.Wesolvethisbyusingthefollowingtechnique:Whenanexpressionconsistsofapolynomialsdividedbyanotherpolynomials,divideeachtermofthenumeratorandthedenominatorbythehighestpowerofthatappearsintheexpression.Thehighestpowerofinthiscaseis,sowedivideeverytermintheexpression(bothtopandbottom)by,likeso:Nowwhenwetalkthelimit,thetwotermscontainingapproachzero.We'releftwith.
Example9:FindDivideezchtermby.Youget:
Example10:FindDivideezchtermby.
Theotherpowersdon'tmatter,becausethey'reallgoingtodisappear.Nowwehavethreenewrulesforevaluatingthelimitofarationalexpressionasapproachesinfinity:1)Ifthehighestpowerofinarationalexpressionisinthenumerator,thenthelimitasapproachesinfinityisinfinity.Example:2)Ifthehighestpowerofinarationalexpressionisinthedenominator,thenthelimitasapproachesinfinityiszero.Example:3)Ifthehighestpowerofinarationalexpressionisthesameinboththenumeratoranddenominator,thenthelimitasapproachesinfinityisthecoefficientofthehighestterminthenumratordividedbythecoefficientofthehighestterminthedenomiator.Example:1.2LimitsoftrigonometricfunctionsRuleNo.1:Thismayseemstrange,butifyoulookatthegraphsoftheyhaveapproximatelythesameslopeneartheorigin(asgetsclosertozero).Sinceandthesineofareaboutthesameasapproacheszero,theirquotientwillbeveryclosetoone.Furthermore,because(reviewcosinevaluesifyoudon'tgetthis!),weknowthatNowwewillfindasecondrule.Let'sevaluatethelimitFirst,multiplythetopandbottomby.
Weget:
Nowsimplifythelimitto:Next,wecanusethetrigonometricidentityandrewritethelimitas:Now,breakthisintotwolimits:Thefirstlimitis-1(seeRuleNo.1)andthesecondis0,sothelimitis0.RuleNo.2:Example11:FindExample12:FindRuleNo.3:RuleNo.4:Example13:FindProblem1.FindProblem2.FindProblem3.FindProblem4.FindProblem5.FindProblem6.FindProblem7.FindTheorem1.2PropertiesofLimitsTheorem1.3LimitsofPolynomialandRationalFunctionsUseyourcalculatortodeterminethefollowing:(a)(b)1.2Limitsoftrigonometricfunctions1DNESupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitsSupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitswherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.2.1RatesofChangeandLimitsEvaluatethefollowinglimits.Justifyeachstepusingthelawsoflimits.16-5/4262.1RatesofChangeandLimitsIffisarationalfunctionorcomplex:Eliminatecommonfactors.Performlongdivision.Simplifythefunction(ifacomplexfraction)Ifradicalsexist,rationalizethenumeratorordenominator.Ifabsolutevaluesexist,useone-sidedlimitsandthefollowingproperty.2.1RatesofChangeandLimits3/2DNE1/2DNE2.1RatesofChangeandLimitsTheoremIff(x)g(x)whenxisneara(exceptpossiblyata)andthelimitsoffandgbothexistasxapproachesa,then
2.1RatesofChangeandLimitsTheSqueeze(Sandwich)TheoremIff(x)g(x)h(x)whenxisneara(exceptpossiblyata)andthen2.1RatesofChangeandLimitsShowthat:Themaximumvalueofsineis1,soTheminimumvalueofsineis-1,soSo:2.1RatesofChangeandLimitsBythesandwichtheorem:2.1RatesofChangeandLimits2.1RatesofChangeandLimitsTherefore,2.1RatesofChangeandLimitssimplifyanddividebysinθ2.1RatesofChangeandLimits2.1RatesofChangeandLimitsP(cos,sin)Q(1,0)Thenotationmeansthatthevaluesoff(x)canbemadearbitrarilylarge(aslargeasweplease)bytakingxsufficientlyclosetoa(oneitherside)butnotequaltoa.2.2LimitsInvolvingInfinityafVerticalAsymptote2.2LimitsInvolvingInfinityVerticalAsymptoteThelinex=aiscalledaverticalasymptoteofthecurvey=f(x)ifatleastoneofthefollowingstatementsistrue:2.2LimitsInvolvingInfinityf(x)=lnxhasaverticalasymptoteatx=0sincef(x)=tanxhasaverticalasymptoteatx=/2since2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinity-∞x=3x=1DeterminetheequationsoftheverticalasymptotesofFindthelimitLetfbeafunctiondefinedonsomeinterval(a,∞).Thenmeansthatthevalueoff(x)canbemadeasclosetoLaswelikebytakingxsufficientlylarge.2.2LimitsInvolvingInfinityHorizontalAsymptoteLf2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinityDefinitionEndBehaviorModelSupposethatfisarationalfunctionasfollows:HorizontalAsymptoteTheliney=Liscalledahorizontalasymptoteofthecurvey=f(x)ifeitheror2.2LimitsInvolvingInfinityf(x)=exhasahorizontalasymptoteaty=0since2.2LimitsInvolvingInfinityIfnisapositiveinteger,then2.2LimitsInvolvingInfinityFindthelimit 2.2LimitsInvolvingInfinity-1/32/31/3Findthelimit 2.2LimitsInvolvingInfinityUsesqueezetheorem2.2LimitsInvolvingInfinityAfunctioniscontinuousatapointifthelimitisthesameasthevalueofthefunction.Thisfunctionhasdiscontinuitiesatx=1andx=2.Itiscontinuousatx=0andx=4,becausetheone-sidedlimitsmatchthevalueofthefunction1234122.3ContinuityDefinition:ContinuityAfunctioniscontinuousatanumberaifThatis,1. f(a)isdefined2. exists3. 2.3ContinuityDefinition:OneSidedContinuityAfunctionfiscontinuousfromtherightatanumberaifandfiscontinuousfromtheleftataif2.3Continuity1.Removablediscontinuity2.3Continuity2.Infinitediscontinuity2.3Continuity3.Jumpdiscontinuity2.3Continuity4.Oscillatingdiscontinuity2.3ContinuityDefinition:ContinuityOnAnIntervalAfunctionfiscontinuousonanintervalifitiscontinuousateverynumberintheinterval.(Iffisdefinedononesideofanendpointoftheinterval,weunderstandcontinuousattheendpointstomeancontinuousfromtherightorcontinuousfromtheleft).2.3ContinuityTheorem
f+g
f–g
cf
fg
f/gifg(a)0
f(g(x))Iffandgarecontinuousataandcisaconstant,thenthefollowingfunctionsarealsocontinuousata:2.3ContinuityTheoremAnypolynomialiscontinuouseverywhere;thatis,itiscontinuouson=(-∞,∞).Anyrationalfunctioniscontinuouswheneveritisdefined;thatis,itiscontinuousonitsdomain.2.3ContinuityAnyofthefollowingtypesoffunctionsarecontinuousateverynumberintheirdomain:Polynomials;RationalFunctions,RootFunctions;TrigonometricFunctions;InverseTrigonometricFunctions;ExponentialFunctions;andLogarithmicFunctions.2.3ContinuityIffiscontinuousatband ,then .Inotherwords,2.3ContinuityIfgiscontinuousataandfiscontinuousatg(a),thenthecompositefunctionf(g(x))iscontinuousata.2.3ContinuityTheIntermediateValueTheoremSupposethatfiscontinuousontheclosedinterval[a,b]andletNbeanynumberbetweenf(a)andf(b).Thenthereexistsanumbercin(a,b)suchthatf(c)=N.afbf(a)f(b)cf(c)=N2.3ContinuityUsetheIntermediateValueTheoremtoshowthatthereisarootofthegivenequationinthespecifiedinterval.2.3ContinuityGraphContinuousatx=0?
GraphContinuousatx=0?00yesundefined0noundefinedDNEnoundefined1no00yesundefined1noundefinedDNEno0DNEnoundefined0noDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,2.3ContinuitySolutionSetc=1andf(x)=5x-3andL=2.Foranygiven>0,thereexistsa>0suchthat0<|x-1|<whenever|f(x)-2|<2.3Continuity|(5x-3)-2|<|5x-5|<5|x-1|<|x-1|</5Soif=/51-11+2+2-22.3ContinuitySolutionSetc=2andf(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年浙江客運資格證場景模擬
- 2025屆四川省成都市新都第一中學(xué)數(shù)學(xué)高三上期末綜合測試模擬試題含解析
- 2025屆江蘇省鹽城市示范名校生物高一上期末質(zhì)量跟蹤監(jiān)視試題含解析
- 2025屆遼寧省大連市大世界高級中學(xué)高三英語第一學(xué)期期末達標(biāo)檢測模擬試題含解析
- 廣東廣州市增城區(qū)2025屆數(shù)學(xué)高二上期末預(yù)測試題含解析
- 河南省開封十中2025屆高一生物第一學(xué)期期末預(yù)測試題含解析
- 2025屆山東省東營市河口區(qū)一中高三英語第一學(xué)期期末監(jiān)測模擬試題含解析
- 遼寧省本溪市第二中學(xué)2025屆高三英語第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 2025屆三門峽市重點中學(xué)高二上數(shù)學(xué)期末達標(biāo)檢測試題含解析
- 2025屆四川省遂寧市射洪中學(xué)高三英語第一學(xué)期期末質(zhì)量檢測模擬試題含解析
- 末梢采血護理課件
- 《孕期心理保健》課件
- 第四屆中國電信“創(chuàng)智杯”數(shù)字化轉(zhuǎn)型銷售大賽數(shù)字營銷組織與門店管理類知識競賽試題附有答案
- 《勞動教育通論》勞動者保障:社會保險與福利
- 《中小學(xué)書法教育指導(dǎo)綱要》解讀
- 《中國封建社會》課件
- 《信息科技》學(xué)科新課標(biāo)《義務(wù)教育信息科技課程標(biāo)準(zhǔn)(2022年版)》
- 范微觀濟學(xué)現(xiàn)代觀點課后習(xí)題詳解
- 路基排水工程施工-地下排水設(shè)施施工
- 【良品鋪子企業(yè)營運能力存在的問題及對策(8700字論文)】
- 家校共育工作手冊
評論
0/150
提交評論