2023屆湖南省岳陽市九校中考三模數(shù)學試題含解析_第1頁
2023屆湖南省岳陽市九校中考三模數(shù)學試題含解析_第2頁
2023屆湖南省岳陽市九校中考三模數(shù)學試題含解析_第3頁
2023屆湖南省岳陽市九校中考三模數(shù)學試題含解析_第4頁
2023屆湖南省岳陽市九校中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下面的統(tǒng)計圖反映了我市2011﹣2016年氣溫變化情況,下列說法不合理的是()A.2011﹣2014年最高溫度呈上升趨勢B.2014年出現(xiàn)了這6年的最高溫度C.2011﹣2015年的溫差成下降趨勢D.2016年的溫差最大2.右圖是由四個小正方體疊成的一個立體圖形,那么它的俯視圖是()A. B. C. D.3.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.4.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數(shù)均為8.7環(huán),方差分別為,,,,則四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁5.某經銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊6.下列幾何體中三視圖完全相同的是()A. B. C. D.7.一次函數(shù)的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.49.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:110.關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A是反比例函數(shù)y=﹣(x<0)圖象上的點,分別過點A向橫軸、縱軸作垂線段,與坐標軸恰好圍成一個正方形,再以正方形的一組對邊為直徑作兩個半圓,其余部分涂上陰影,則陰影部分的面積為______.12.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.13.如圖,在平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(2,4),將△AOB繞點A逆時針旋轉90°,點O的對應點C恰好落在反比例函數(shù)y=的圖象上,則k的值為_____.14.如圖,△ABC內接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數(shù)為_______°.15.可燃冰是一種新型能源,它的密度很小,可燃冰的質量僅為.數(shù)字0.00092用科學記數(shù)法表示是__________.16.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.三、解答題(共8題,共72分)17.(8分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內接水.18.(8分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?19.(8分)解方程式:-3=20.(8分)為了解某校初二學生每周上網(wǎng)的時間,兩位學生進行了抽樣調查.小麗調查了初二電腦愛好者中40名學生每周上網(wǎng)的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調查了每周上網(wǎng)的時間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示.時間段(小時/周)小麗抽樣(人數(shù))小杰抽樣(人數(shù))0~16221~210102~31663~482(1)你認為哪位學生抽取的樣本不合理?請說明理由.專家建議每周上網(wǎng)2小時以上(含2小時)的學生應適當減少上網(wǎng)的時間,估計該校全體初二學生中有多少名學生應適當減少上網(wǎng)的時間.21.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).22.(10分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)23.(12分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達式;乙出發(fā)后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?24.如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉90°,畫出旋轉后得到的△A″B′C″,并求邊A′B′在旋轉過程中掃過的圖形面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用折線統(tǒng)計圖結合相應數(shù)據(jù),分別分析得出符合題意的答案.【詳解】A選項:年最高溫度呈上升趨勢,正確;

B選項:2014年出現(xiàn)了這6年的最高溫度,正確;

C選項:年的溫差成下降趨勢,錯誤;

D選項:2016年的溫差最大,正確;

故選C.【點睛】考查了折線統(tǒng)計圖,利用折線統(tǒng)計圖獲取正確信息是解題關鍵.2、B【解析】解:從上面看,上面一排有兩個正方形,下面一排只有一個正方形,故選B.3、D【解析】

主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【點睛】此題主要考查了幾何體的三視圖,主要考查同學們的空間想象能力.4、D【解析】

根據(jù)方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩(wěn)定,故選D.【點睛】此題主要考查了方差,關鍵是掌握方差越小,穩(wěn)定性越大.5、C【解析】試題分析:根據(jù)題意設出未知數(shù),列出相應的不等式,從而可以解答本題.設這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點:一元一次不等式的應用6、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.7、B【解析】

由二次函數(shù),可得函數(shù)圖像經過一、三、四象限,所以不經過第二象限【詳解】解:∵,∴函數(shù)圖象一定經過一、三象限;又∵,函數(shù)與y軸交于y軸負半軸,

∴函數(shù)經過一、三、四象限,不經過第二象限故選B【點睛】此題考查一次函數(shù)的性質,要熟記一次函數(shù)的k、b對函數(shù)圖象位置的影響8、B【解析】

根據(jù)余角的性質,可得∠DCA與∠CBE的關系,根據(jù)AAS可得△ACD與△CBE的關系,根據(jù)全等三角形的性質,可得AD與CE的關系,根據(jù)線段的和差,可得答案.【詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【點睛】本題考查了全等三角形的判定與性質,解題的關鍵是熟練的掌握全等三角形的判定與性質.9、C【解析】

求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,

陰影部分的面積,

空白部分與陰影部分面積之比是::1,

故選C.【點睛】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.10、A【解析】分析:根據(jù)關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.二、填空題(本大題共6個小題,每小題3分,共18分)11、4﹣π【解析】

由題意可以假設A(-m,m),則-m2=-4,求出點A坐標即可解決問題.【詳解】由題意可以假設A(-m,m),則-m2=-4,∴m=≠±2,∴m=2,∴S陰=S正方形-S圓=4-π,故答案為4-π.【點睛】本題考查反比例函數(shù)圖象上的點的特征、正方形的性質、圓的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題12、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質,全等三角形的判定性質,勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.13、1【解析】

根據(jù)題意和旋轉的性質,可以得到點C的坐標,把點C坐標代入反比例函數(shù)y=中,即可求出k的值.【詳解】∵OB在x軸上,∠ABO=90°,點A的坐標為(2,4),∴OB=2,AB=4∵將△AOB繞點A逆時針旋轉90°,∴AD=4,CD=2,且AD//x軸∴點C的坐標為(6,2),∵點O的對應點C恰好落在反比例函數(shù)y=的圖象上,

∴k=2,故答案為1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化-旋轉,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.14、48°【解析】

如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內接四邊形的性質可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內接四邊形的性質、周角定理及切線性質,圓內接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關知識是解題關鍵.15、9.2×10﹣1.【解析】

根據(jù)科學記數(shù)法的正確表示為,由題意可得0.00092用科學記數(shù)法表示是9.2×10﹣1.【詳解】根據(jù)科學記數(shù)法的正確表示形式可得:0.00092用科學記數(shù)法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點睛】本題主要考查科學記數(shù)法的正確表現(xiàn)形式,解決本題的關鍵是要熟練掌握科學記數(shù)法的正確表現(xiàn)形式.16、【解析】

設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義即可求解.【詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數(shù)y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【點睛】此題主要考查等腰直角三角形的面積求法和反比例函數(shù)k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數(shù)k值的性質.三、解答題(共8題,共72分)17、(1)當0≤x≤8時,y=10x+20;當8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內接水.【解析】

(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數(shù)的解析式;當8<x≤a時,設y=,將(8,100)的坐標代入y=,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y=20代入反比例函數(shù)的解析式,即可求得a值;(3)把y=40代入反比例函數(shù)的解析式,求得對應x的值,根據(jù)想喝到不低于40℃的開水,結合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【詳解】解:(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,可求得k1=10,b=20∴當0≤x≤8時,y=10x+20.當8<x≤a時,設y=,將(8,100)的坐標代入y=,得k2=800∴當8<x≤a時,y=.綜上,當0≤x≤8時,y=10x+20;當8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【點睛】本題主要考查了一次函數(shù)及反比例函數(shù)的應用題,是一個分段函數(shù)問題,分段函數(shù)是在不同區(qū)間有不同對應方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學合理,又要符合實際.18、(1)不會穿過森林保護區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區(qū),也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區(qū).(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.19、x=3【解析】

先去分母,再解方程,然后驗根.【詳解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,經檢驗,x=3是原方程的根.【點睛】此題重點考察學生對分式方程解的應用,掌握分式方程的解法是解題的關鍵.20、(1)小麗;(2)80【解析】

解:(1)小麗;因為她沒有從全校初二學生中隨機進行抽查,不具有隨機性與代表性.(2).答:該校全體初二學生中有80名同學應適當減少上網(wǎng)的時間.21、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.22、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當CD=CE時,△DEC是等腰三角形;(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論