版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列實數(shù)中是無理數(shù)的是()A. B.π C. D.2.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥33.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對4.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.5.△ABC在網(wǎng)絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.6.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,
將剪下的扇形作為一個圓錐側面,如果圓錐的高為,則這塊圓形紙片的直徑為(
)A.12cm B.20cm C.24cm D.28cm7.下列運算正確的是()A.5a+2b=5(a+b) B.a(chǎn)+a2=a3C.2a3?3a2=6a5 D.(a3)2=a58.下列圖形是我國國產(chǎn)品牌汽車的標識,在這些汽車標識中,是中心對稱圖形的是()A. B. C. D.9.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤10.在△ABC中,∠C=90°,,那么∠B的度數(shù)為()A.60° B.45° C.30° D.30°或60°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.12.某種商品因換季準備打折出售,如果按定價的七五折出售將賠25元,而按定價的九折出售將賺20元,則商品的定價是______元13.如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為____.14.點G是三角形ABC的重心,,,那么=_____.15.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.16.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.17.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當點B的移動距離為時,四邊ABC1D1為矩形;當點B的移動距離為時,四邊形ABC1D1為菱形.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=﹣x2+5x+n經(jīng)過點A(1,0),與y軸交于點B.(1)求拋物線的解析式;(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.19.(5分)如圖1,△ABC中,AB=AC=6,BC=4,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點M、N、P分別是線段DE、BC、CD的中點,連接MP、PN、MN.(1)求證:△PMN是等腰三角形;(2)將△ADE繞點A逆時針旋轉,①如圖2,當點D、E分別在邊AC兩側時,求證:△PMN是等腰三角形;②當△ADE繞點A逆時針旋轉到第一次點D、E、C在一條直線上時,請直接寫出此時BD的長.20.(8分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷221.(10分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調(diào)查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調(diào)查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:(1)本次被調(diào)查的學員共有人;在被調(diào)查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.22.(10分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(12分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.24.(14分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、是分數(shù),屬于有理數(shù);B、π是無理數(shù);C、=3,是整數(shù),屬于有理數(shù);D、-是分數(shù),屬于有理數(shù);故選B.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).2、C【解析】
根據(jù)“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【點睛】考查了解不等式組,根據(jù)求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.3、B【解析】
解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.4、C【解析】
主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.5、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.6、C【解析】
設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質得到AB=R,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.7、C【解析】
直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.8、B【解析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.9、B【解析】
根據(jù)一次函數(shù)的性質,根據(jù)不等式組即可解決問題;【詳解】∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數(shù)的圖象與系數(shù)的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考??碱}型.10、C【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質,熟記特殊角的三角函數(shù)值是解答本題的突破點.二、填空題(共7小題,每小題3分,滿分21分)11、4m【解析】
設路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關于x的一元一次方程,然后求解方程即可.【詳解】設路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.12、300【解析】
設成本為x元,標價為y元,根據(jù)已知條件可列二元一次方程組即可解出定價.【詳解】設成本為x元,標價為y元,依題意得,解得故定價為300元.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據(jù)題意列出方程再求解.13、3【解析】試題分析:因為等腰△ABC的周長為33,底邊BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周長為=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考點:3.等腰三角形的性質;3.垂直平分線的性質.14、.【解析】
根據(jù)題意畫出圖形,由,,根據(jù)三角形法則,即可求得的長,又由點G是△ABC的重心,根據(jù)重心的性質,即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質:三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎題目.15、2【解析】
根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質.16、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).17、,.【解析】試題分析:當點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當點B的移動距離為時,D、B1兩點重合,根據(jù)對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為矩形;當四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質.三、解答題(共7小題,滿分69分)18、(1);(2)(0,)或(0,4).【解析】試題分析:(1)將A點的坐標代入拋物線中,即可得出二次函數(shù)的解析式;(2)本題要分兩種情況進行討論:①PB=AB,先根據(jù)拋物線的解析式求出B點的坐標,即可得出OB的長,進而可求出AB的長,也就知道了PB的長,由此可求出P點的坐標;②PA=AB,此時P與B關于x軸對稱,由此可求出P點的坐標.試題解析:(1)∵拋物線經(jīng)過點A(1,0),∴,∴;(2)∵拋物線的解析式為,∴令,則,∴B點坐標(0,﹣4),AB=,①當PB=AB時,PB=AB=,∴OP=PB﹣OB=.∴P(0,),②當PA=AB時,P、B關于x軸對稱,∴P(0,4),因此P點的坐標為(0,)或(0,4).考點:二次函數(shù)綜合題.19、(1)見解析;(2)①見解析;②279【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結論PM=PN;(2)①先證明△ABD≌△ACE,得BD=CE,同理根據(jù)三角形中位線定理可得結論;②如圖4,連接AM,計算AN和DE、EM的長,如圖3,證明△ABD≌△CAE,得BD=CE,根據(jù)勾股定理計算CM的長,可得結論【詳解】(1)如圖1,∵點N,P是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如圖2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵點M、N、P分別是線段DE、BC、CD的中點,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②當△ADE繞點A逆時針旋轉到第一次點D、E、C在一條直線上時,如圖3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如圖4,連接AM,∵M是DE的中點,N是BC的中點,AB=AC,∴A、M、N共線,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如圖3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【點睛】此題是三角形的綜合題,主要考查了三角形的中位線定理,等腰三角形的判定和性質,全等和相似三角形的判定和性質,直角三角形的性質,解(1)的關鍵是判斷出PM=12CE,PN=120、【解析】
按照實數(shù)的運算順序進行運算即可.【詳解】解:原式【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個知識點是解題的關鍵.21、(1)50,10;(2)見解析.(3)16.8萬【解析】
(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數(shù)及百分比,求得總人數(shù)為50人;再由總人數(shù)減去參加“1科”,“2科”,“4科”課外輔導人數(shù)即可求出答案.(2)由(1)知在被調(diào)查者中參加“3科”課外輔導的有10人,由扇形統(tǒng)計圖可知參加“4科”課外輔導人數(shù)占比為10%,故參加“4科”課外輔導人數(shù)的有5人.(3)因為參加“1科”和“2科”課外輔導人數(shù)占比為,所以全市參與輔導科目不多于2科的人數(shù)為24×=16.8(萬).【詳解】解:(1)本次被調(diào)查的學員共有:15÷30%=50(人),在被調(diào)查者中參加“3科”課外輔導的有:50﹣15﹣20﹣50×10%=10(人),故答案為50,10;(2)由(1)知在被調(diào)查者中參加“3科”課外輔導的有10人,在被調(diào)查者中參加“4科”課外輔導的有:50×10%=5(人),補全的條形統(tǒng)計圖如右圖所示;(3)24×=16.8(萬),答:參與輔導科目不多于2科的學生大約有16.8人.【點睛】本題考察了條形統(tǒng)計圖和扇形統(tǒng)計圖,關鍵在于將兩者結合起來解題.22、35km【解析】試題分析:如圖作CH⊥AD于H.設CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.試題解析:如圖,作CH⊥AD于H.設CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E處距離港口A有35km.23、(1)y=﹣x2+2x+3;(2)見解析.【解析】
(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 售后服務協(xié)議合同常見問題
- 空調(diào)內(nèi)部結構優(yōu)化質保服務
- 采購合同樣式集錦
- 燈具安裝合同樣本
- 計劃成長擔保
- 心理測評與咨詢協(xié)議
- 退款協(xié)議書合同范本
- 重建幸福家庭的諾言
- 別墅石材招標文件
- 工作責任保證書樣本
- DL-T 572-2021電力變壓器運行規(guī)程-PDF解密
- 2024年貴州貴安新區(qū)產(chǎn)業(yè)發(fā)展控股集團有限公司招聘筆試參考題庫含答案解析
- RBA-6.0-培訓教材課件
- 塑造安全文化品牌 構建平安和諧礦區(qū)
- 智能基礎設施設計與優(yōu)化
- 《中國心力衰竭診斷和治療指南(2024)》解讀
- 中醫(yī)烤燈的應用與護理
- 變頻控制柜知識講座
- 2024年3月河北定向選調(diào)生面試及參考答案全套
- 智能建造專業(yè)職業(yè)規(guī)劃
- 2024屆浦東新區(qū)初三英語期末練習卷及答案
評論
0/150
提交評論