2023屆賀州市重點中學中考數(shù)學模擬精編試卷含解析_第1頁
2023屆賀州市重點中學中考數(shù)學模擬精編試卷含解析_第2頁
2023屆賀州市重點中學中考數(shù)學模擬精編試卷含解析_第3頁
2023屆賀州市重點中學中考數(shù)學模擬精編試卷含解析_第4頁
2023屆賀州市重點中學中考數(shù)學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習2.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x53.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.54.如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對5.根據(jù)如圖所示的程序計算函數(shù)y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣76.下列四個命題,正確的有()個.①有理數(shù)與無理數(shù)之和是有理數(shù)②有理數(shù)與無理數(shù)之和是無理數(shù)③無理數(shù)與無理數(shù)之和是無理數(shù)④無理數(shù)與無理數(shù)之積是無理數(shù).A.1 B.2 C.3 D.47.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.8.(2011?雅安)點P關于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)9.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分10.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣411.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<412.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當你抬頭看信號燈時,是綠燈的概率為____.14.有兩名學員小林和小明練習射擊,第一輪10槍打完后兩人打靶的環(huán)數(shù)如圖所示,通常新手的成績不太穩(wěn)定,那么根據(jù)圖中的信息,估計小林和小明兩人中新手是_______.15.圓錐底面圓的半徑為3,高為4,它的側面積等于_____(結果保留π).16.若一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),則x的取值范圍是_______.17.不等式組x-2>0①2x-6>2②18.如圖(1),將一個正六邊形各邊延長,構成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.20.(6分)如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出B1點的坐標;(2)畫出△ABC繞原點O旋轉(zhuǎn)180°后得到的圖形△A2B2C2,并寫出B2點的坐標;(3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.21.(6分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.求一次函數(shù)關系式;根據(jù)圖象直接寫出kx+b﹣>0的x的取值范圍;求△AOB的面積.22.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉(zhuǎn)一個角α(0°<α<90°),在旋轉(zhuǎn)過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.23.(8分)如圖,一只螞蟻從點A沿數(shù)軸向右直爬2個單位到達點B,點A表示﹣,設點B所表示的數(shù)為m.求m的值;求|m﹣1|+(m+6)0的值.24.(10分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學的數(shù)學興趣小組針對風電塔桿進行了測量,甲同學站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)25.(10分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;攪勻后,從中任意取一個球,標號為正數(shù)的概率是;攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.26.(12分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.27.(12分)尺規(guī)作圖:用直尺和圓規(guī)作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.2、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.3、C【解析】

根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.4、A【解析】

由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數(shù)的應用,相似三角形的判定與性質(zhì),綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關鍵.5、C【解析】

先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數(shù)值,解題的關鍵是掌握函數(shù)值的計算方法.6、A【解析】解:①有理數(shù)與無理數(shù)的和一定是有理數(shù),故本小題錯誤;②有理數(shù)與無理數(shù)的和一定是無理數(shù),故本小題正確;③例如=0,0是有理數(shù),故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數(shù),故本小題錯誤.故選A.點睛:本題考查的是實數(shù)的運算及無理數(shù)、有理數(shù)的定義,熟知以上知識是解答此題的關鍵.7、D【解析】

根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關鍵.8、A【解析】∵關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),∴點P的坐標為(3,﹣4).故選A.9、D【解析】

解:總人數(shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術平均數(shù),掌握概念正確計算是關鍵.10、B【解析】

利用待定系數(shù)法求出m,再結合函數(shù)的性質(zhì)即可解決問題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.11、A【解析】

根據(jù)一元一次不等式的解法,移項,合并同類項,系數(shù)化為1即可得解.【詳解】移項得:?x>3?1,合并同類項得:?x>2,系數(shù)化為1得:x<-4.故選A.【點睛】本題考查了解一元一次不等式,解題的關鍵是熟練的掌握一元一次不等式的解法.12、B【解析】

配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù),據(jù)此用綠燈亮的時間除以三種燈亮的總時間,求出抬頭看信號燈時,是綠燈的概率為多少即可.【詳解】抬頭看信號燈時,是綠燈的概率為.故答案為:.【點睛】此題主要考查了概率公式的應用,要熟練掌握,解答此題的關鍵是要明確:(1)隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.14、小林【解析】

觀察圖形可知,小林的成績波動比較大,故小林是新手.

故答案是:小林.15、15π【解析】

根據(jù)圓的面積公式、扇形的面積公式計算即可.【詳解】圓錐的母線長==5,,圓錐底面圓的面積=9π圓錐底面圓的周長=2×π×3=6π,即扇形的弧長為6π,∴圓錐的側面展開圖的面積=×6π×5=15π,【點睛】本題考查的是扇形的面積,熟練掌握扇形和圓的面積公式是解題的關鍵.16、x<1【解析】

根據(jù)一次函數(shù)的性質(zhì)得出不等式解答即可.【詳解】因為一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.【點睛】本題考查了一次函數(shù)與一元一次不等式,根據(jù)題意正確列出不等式是解題的關鍵.17、x>4【解析】

分別解出不等式組中的每一個不等式,然后根據(jù)同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取小;大小小大中間找;大大小小找不到.18、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形).(1)利用兩邊和它們的夾角對應相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據(jù)一組對邊平行且相等的四邊形是平行四邊形.20、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】

試題分析:(1)、根據(jù)網(wǎng)格結構找出點A、B、C平移后的對應點A1、B1、C1的位置,然后順次連接即可;(2)、根據(jù)網(wǎng)格結構找出點A、B、C關于原點的對稱點A2、B2、C2的位置,然后順次連接即可;(3)、找出點A關于x軸的對稱點A′,連接A′B與x軸相交于一點,根據(jù)軸對稱確定最短路線問題,交點即為所求的點P的位置,然后連接AP、BP并根據(jù)圖象寫出點P的坐標即可.試題解析:(1)、△A1B1C1如圖所示;B1點的坐標(-4,2)(2)、△A2B2C2如圖所示;B2點的坐標:(-4,-2)(3)、△PAB如圖所示,P(2,0).考點:(1)、作圖-旋轉(zhuǎn)變換;(2)、軸對稱-最短路線問題;(3)、作圖-平移變換.21、(1)y=-2x+1;(2)1<x<2;(2)△AOB的面積為1.【解析】試題分析:(1)首先根據(jù)A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,求出m,n的值各是多少;然后求出一次函數(shù)的解析式,再根據(jù)一元二次不等式的求法,求出x的取值范圍即可.(2)由-2x+1-<0,求出x的取值范圍即可.(2)首先分別求出C點、D點的坐標的坐標各是多少;然后根據(jù)三角形的面積的求法,求出△AOB的面積是多少即可.試題解析:(1)∵A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,∴6=,,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴y=-2x+1.(2)由-2x+1-<0,解得0<x<1或x>2.(2)當x=0時,y=-2×0+1=1,∴C點的坐標是(0,1);當y=0時,0=-2x+1,解得x=4,∴D點的坐標是(4,0);∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.22、(1);(1),E(1,1);(3)存在,P點坐標可以為(1+,5)或(3,5).【解析】

(1)設B(x1,5),由已知條件得,進而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標.(3)設N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標.又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標.【詳解】解:(1)設B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當m=1時,S四邊形CDBF最大,為.此時,E點坐標為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉(zhuǎn)一個角α(5°<α<95°),設N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標為(1+,5).當△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標為(3,5).綜上所述,滿足題意的P點坐標可以為,(1+,5),(3,5).【點睛】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.23、(1)2-;(2)【解析】試題分析:點表示向右直爬2個單位到達點,點表示的數(shù)為把的值代入,對式子進行化簡即可.試題解析:由題意點和點的距離為,其點的坐標為因此點坐標把的值代入得:24、塔桿CH的高為42米【解析】

作BE⊥DH,知GH=BE、BG=EH=4,設AH=x,則BE=GH=23+x,由CH=AHtan∠CAH=tan55°?x知CE=CH-EH=tan55°?x-4,根據(jù)BE=DE可得關于x的方程,解之可得.【詳解】解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=4,設AH=x,則BE=GH=GA+AH=23+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論