版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.關(guān)于的不等式的解集如圖所示,則的取值是A.0 B. C. D.2.某校120名學(xué)生某一周用于閱讀課外書籍的時(shí)間的頻率分布直方圖如圖所示.其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.253.《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據(jù)所學(xué)知識計(jì)算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸4.2017年牡丹區(qū)政府工作報(bào)告指出:2012年以來牡丹區(qū)經(jīng)濟(jì)社會(huì)發(fā)展取得顯著成就,綜合實(shí)力明顯提升,地區(qū)生產(chǎn)總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學(xué)記數(shù)法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10105.下列幾何體是由4個(gè)相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.6.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯(cuò)誤的有().A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)7.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元8.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時(shí)紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°9.sin45°的值等于()A. B.1 C. D.10.在中,,,,則的值是()A. B. C. D.11.如圖,AB∥CD,E為CD上一點(diǎn),射線EF經(jīng)過點(diǎn)A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°12.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點(diǎn),E,F(xiàn)分別是AP,RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動(dòng)而點(diǎn)R不動(dòng)時(shí),那么下列結(jié)論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.一次函數(shù)y=kx+b的圖象如圖所示,當(dāng)y>0時(shí),x的取值范圍是_____.14.計(jì)算:6﹣=_____15.如圖,矩形ABCD中,E為BC的中點(diǎn),將△ABE沿直線AE折疊時(shí)點(diǎn)B落在點(diǎn)F處,連接FC,若∠DAF=18°,則∠DCF=_____度.16.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使得點(diǎn)A落在點(diǎn)A′,點(diǎn)B落在點(diǎn)B′.若點(diǎn)A′在邊AB上,則點(diǎn)B、B′的距離為_____.17.如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m.水面下降2.5m,水面寬度增加_____m.18.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為_____cm1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過點(diǎn)A作AC⊥x軸,垂足為C,過點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E.若AC=OD,求a、b的值;若BC∥AE,求BC的長.20.(6分)如圖,已知A是⊙O上一點(diǎn),半徑OC的延長線與過點(diǎn)A的直線交于點(diǎn)B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.21.(6分)如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)的圖象相交于點(diǎn)A(4,n),與軸相交于點(diǎn)B.填空:n的值為,k的值為;以AB為邊作菱形ABCD,使點(diǎn)C在軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);考察反比函數(shù)的圖象,當(dāng)時(shí),請直接寫出自變量的取值范圍.22.(8分)如圖,已知點(diǎn)E,F(xiàn)分別是?ABCD的對角線BD所在直線上的兩點(diǎn),BF=DE,連接AE,CF,求證:CF=AE,CF∥AE.23.(8分)如圖所示,飛機(jī)在一定高度上沿水平直線飛行,先在點(diǎn)處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時(shí)測得小島的俯角為.如果小島高度忽略不計(jì),求飛機(jī)飛行的高度(結(jié)果保留根號).24.(10分)如圖,在四邊形中,為一條對角線,,,.為的中點(diǎn),連結(jié).(1)求證:四邊形為菱形;(2)連結(jié),若平分,,求的長.25.(10分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計(jì)算說明多少層以下會(huì)受到擋光的影響?參考數(shù)據(jù):,,,,,26.(12分)如圖①,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).(1)求這個(gè)拋物線的解析式;(2)如圖②,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長最???若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.27.(12分)如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CE^AB于E,CD平分DECB,交過點(diǎn)B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
首先根據(jù)不等式的性質(zhì),解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點(diǎn)睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.2、D【解析】分析:根據(jù)頻率分布直方圖中的數(shù)據(jù)信息和被調(diào)查學(xué)生總數(shù)為120進(jìn)行計(jì)算即可作出判斷.詳解:由頻率分布直方圖可知:一周內(nèi)用于閱讀的時(shí)間在8-10小時(shí)這組的:頻率:組距=0.125,而組距為2,∴一周內(nèi)用于閱讀的時(shí)間在8-10小時(shí)這組的頻率=0.125×2=0.25,又∵被調(diào)查學(xué)生總數(shù)為120人,∴一周內(nèi)用于閱讀的時(shí)間在8-10小時(shí)這組的頻數(shù)=120×0.25=30.綜上所述,選項(xiàng)D中數(shù)據(jù)正確.故選D.點(diǎn)睛:本題解題的關(guān)鍵有兩點(diǎn):(1)要看清,縱軸上的數(shù)據(jù)是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數(shù)、頻率和總數(shù)之間的關(guān)系.3、C【解析】分析:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點(diǎn)睛:本題考查垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題4、D【解析】
根據(jù)科學(xué)記數(shù)法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點(diǎn)睛】把一個(gè)大于10或者小于1的數(shù)表示為的形式,其中1≤|a|<10,這種記數(shù)法叫做科學(xué)記數(shù)法.5、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項(xiàng)C左視圖與俯視圖都是,故選C.6、A【解析】3+3=6,錯(cuò)誤,無法計(jì)算;②=1,錯(cuò)誤;③+==2不能計(jì)算;④=2,正確.故選A.7、C【解析】
根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴(kuò)大后長方形廣告牌的面積,計(jì)算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴(kuò)大為原來的3倍,則面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的面積=9×6=54m2,∴擴(kuò)大后長方形廣告牌的成本是54×20=1080元,故選C.【點(diǎn)睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.8、C【解析】
根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點(diǎn)睛】本題考了扇形面積的計(jì)算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計(jì)算公式:扇形的面積=.9、D【解析】
根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)的應(yīng)用,能熟記特殊角的三角函數(shù)值是解此題的關(guān)鍵,難度適中.10、D【解析】
首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點(diǎn)睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.11、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點(diǎn)睛:本題考查的是平行線的性質(zhì),熟知兩直線平行,同位角相等是解答此題的關(guān)鍵.12、C【解析】
因?yàn)镽不動(dòng),所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點(diǎn),∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點(diǎn)睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應(yīng)的中位線的長度就不變.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】試題解析:根據(jù)圖象和數(shù)據(jù)可知,當(dāng)y>0即圖象在x軸的上方,x>1.
故答案為x>1.14、3【解析】
按照二次根式的運(yùn)算法則進(jìn)行運(yùn)算即可.【詳解】【點(diǎn)睛】本題考查的知識點(diǎn)是二次根式的運(yùn)算,解題關(guān)鍵是注意化簡算式.15、1.【解析】
由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性質(zhì)得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性質(zhì)求出∠ECF=54°,即可得出∠DCF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E為BC的中點(diǎn),∴BE=CE,∴FE=CE,∴∠ECF=×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案為1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、折疊變換的性質(zhì)、直角三角形的性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識點(diǎn),求出∠ECF的度數(shù)是解題的關(guān)鍵.16、4【解析】
過點(diǎn)C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進(jìn)而利用三線合一的性質(zhì)得出AA'的值,然后利用旋轉(zhuǎn)的性質(zhì)可判定△ACA'∽△BCB',繼而利用相似三角形的對應(yīng)邊成比例的性質(zhì)可得出BB'的值.【詳解】解:過點(diǎn)C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB?cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC?cosA=4,
由旋轉(zhuǎn)的性質(zhì)得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中點(diǎn),
∴AA'=2AH=8,
又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉(zhuǎn)角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點(diǎn)睛】此題考查了解直角三角形、旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出△ACA'∽△BCB'.17、1.【解析】
根據(jù)已知建立平面直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),
拋物線以y軸為對稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半1米,拋物線頂點(diǎn)C坐標(biāo)為(0,1),
設(shè)頂點(diǎn)式y(tǒng)=ax1+1,把A點(diǎn)坐標(biāo)(-1,0)代入得a=-0.5,
∴拋物線解析式為y=-0.5x1+1,
當(dāng)水面下降1.5米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=-1.5時(shí),對應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=-1與拋物線相交的兩點(diǎn)之間的距離,
可以通過把y=-1.5代入拋物線解析式得出:
-1.5=-0.5x1+1,
解得:x=±3,
1×3-4=1,
所以水面下降1.5m,水面寬度增加1米.
故答案為1.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵,學(xué)會(huì)把實(shí)際問題轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考??碱}型.18、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點(diǎn):扇形面積的計(jì)算.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)a=,b=2;(2)BC=.【解析】試題分析:(1)首先利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)性質(zhì)得出k的值,再得出A、D點(diǎn)坐標(biāo),進(jìn)而求出a,b的值;(2)設(shè)A點(diǎn)的坐標(biāo)為:(m,),則C點(diǎn)的坐標(biāo)為:(m,0),得出tan∠ADF=,tan∠AEC=,進(jìn)而求出m的值,即可得出答案.試題解析:(1)∵點(diǎn)B(2,2)在函數(shù)y=(x>0)的圖象上,∴k=4,則y=,∵BD⊥y軸,∴D點(diǎn)的坐標(biāo)為:(0,2),OD=2,∵AC⊥x軸,AC=OD,∴AC=3,即A點(diǎn)的縱坐標(biāo)為:3,∵點(diǎn)A在y=的圖象上,∴A點(diǎn)的坐標(biāo)為:(,3),∵一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A、D,∴,解得:,b=2;(2)設(shè)A點(diǎn)的坐標(biāo)為:(m,),則C點(diǎn)的坐標(biāo)為:(m,0),∵BD∥CE,且BC∥DE,∴四邊形BCED為平行四邊形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF=,在Rt△ACE中,tan∠AEC=,∴=,解得:m=1,∴C點(diǎn)的坐標(biāo)為:(1,0),則BC=.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.20、(1)見解析;(2)+【解析】
(1)利用題中的邊的關(guān)系可求出△OAC是正三角形,然后利用角邊關(guān)系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點(diǎn)E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質(zhì)就可以得到AD.【詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點(diǎn)E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【點(diǎn)睛】本題考查了切線的判定、直角三角形斜邊上的中線、等腰三角形的性質(zhì)以及圓周角定理、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)3,1;(2)(4+,3);(3)或【解析】
(1)把點(diǎn)A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點(diǎn)A(4,3)代入反比例函數(shù),得到k的值為1;(2)根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可得點(diǎn)B的坐標(biāo)為(2,3),過點(diǎn)A作AE⊥x軸,垂足為E,過點(diǎn)D作DF⊥x軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得△ABE≌△DCF,根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得點(diǎn)D的坐標(biāo);(3)根據(jù)反比函數(shù)的性質(zhì)即可得到當(dāng)y≥-2時(shí),自變量x的取值范圍.【詳解】解:(1)把點(diǎn)A(4,n)代入一次函數(shù)y=x-3,可得n=×4-3=3;把點(diǎn)A(4,3)代入反比例函數(shù),可得3=,解得k=1.(2)∵一次函數(shù)y=x-3與x軸相交于點(diǎn)B,∴x-3=3,解得x=2,∴點(diǎn)B的坐標(biāo)為(2,3),如圖,過點(diǎn)A作AE⊥x軸,垂足為E,過點(diǎn)D作DF⊥x軸,垂足為F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,AB=,∵四邊形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x軸,DF⊥x軸,∴∠AEB=∠DFC=93°,在△ABE與△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴點(diǎn)D的坐標(biāo)為(4+,3).(3)當(dāng)y=-2時(shí),-2=,解得x=-2.故當(dāng)y≥-2時(shí),自變量x的取值范圍是x≤-2或x>3.22、證明見解析【解析】
根據(jù)平行四邊形性質(zhì)推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根據(jù)SAS證兩三角形全等即可解決問題.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF,∠E=∠F,∴AE∥CF.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定的應(yīng)用,解題的關(guān)鍵是準(zhǔn)確尋找全等三角形解決問題.23、【解析】
過點(diǎn)C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據(jù)AD+BD=AB列方程求解可得.【詳解】解:過點(diǎn)C作CD⊥AB于點(diǎn)D,設(shè)CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機(jī)飛行的高度為(5﹣5)km.24、(1)證明見解析;(2)AC=;【解析】
(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
(2)只要證明△ACD是直角三角形,∠ADC=60°,AD=2即可解決問題;【詳解】(1)證明:∵AD=2BC,E為AD的中點(diǎn),∴DE=BC,∵AD∥BC,∴四邊形BCDE是平行四邊形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四邊形BCDE是菱形.(2)連接AC,如圖所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=.【點(diǎn)睛】考查菱形的判定和性質(zhì)、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是熟練掌握菱形的判定方法.25、(1)的長為50m;(2)冬至日20層包括20層以下會(huì)受到擋光的影響,春分日6層包括6層以下會(huì)受到擋光的影響.【解析】
如圖,作于M,于則,設(shè)想辦法構(gòu)建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設(shè).在中,,在中,,,,,的長為50m.由可知:,,,,,冬至日20層包括20層以下會(huì)受到擋光的影響,春分日6層包括6層以下會(huì)受到擋光的影響.【點(diǎn)睛】考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.26、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點(diǎn)I,使得點(diǎn)F與點(diǎn)I關(guān)于x軸對稱,在x軸上取一點(diǎn)H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點(diǎn)的一次函數(shù)解析式為:y=kx+b(k≠0),∵點(diǎn)E在拋物線上且點(diǎn)E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點(diǎn)E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點(diǎn)A(1,0)、B(-3,0)、D(0,3),所以頂點(diǎn)C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點(diǎn)D與點(diǎn)E關(guān)于PQ對稱,GD=GE……………②分別將點(diǎn)A(1,0)、點(diǎn)E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點(diǎn)的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時(shí),y=1∴點(diǎn)F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點(diǎn)F與點(diǎn)I關(guān)于x軸對稱,∴點(diǎn)I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個(gè)定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點(diǎn)的函數(shù)解析式為:y=k分別將點(diǎn)E(-2,3)、點(diǎn)I(0,-1)代入y=k-2k1過I、E兩點(diǎn)的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時(shí),y=1;當(dāng)y=0時(shí),x=-12∴點(diǎn)G坐標(biāo)為(-1,1),點(diǎn)H坐標(biāo)為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點(diǎn)A(1,0),點(diǎn)C(-1,4),設(shè)過A(1,0),點(diǎn)C(-1,4)兩點(diǎn)的函數(shù)解析式為:,得:k2解得:k2過A、C兩點(diǎn)的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時(shí),y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度地基基礎(chǔ)施工質(zhì)量保修合同范本6篇
- 2025版新能源汽車密封膠生產(chǎn)與應(yīng)用合同樣本3篇
- 2024年跨境電子商務(wù)貨運(yùn)代理合同樣本3篇
- 2024投資理財(cái)協(xié)議
- 2025年度影視基地場地租用專項(xiàng)協(xié)議3篇
- 2024年風(fēng)險(xiǎn)投資協(xié)議書:共贏未來3篇
- 2025年度生物質(zhì)能發(fā)電廠安裝施工合同3篇
- 2024年石油化工企業(yè)消防工程合同6篇
- 2024年精準(zhǔn)醫(yī)療技術(shù)服務(wù)協(xié)議模板版B版
- 2025年度校園食堂餐具租賃及采購合同3篇
- 水工混凝土規(guī)范
- 圖書館室內(nèi)裝修投標(biāo)方案(技術(shù)標(biāo))
- 2023蔬菜購銷合同
- 腦梗塞健康管理腦血管疾病冠心病
- 二年級數(shù)學(xué)上冊填空和判斷題100
- 人教精通版5年級(上下冊)單詞表(含音標(biāo))
- 大廈物業(yè)管理保潔服務(wù)標(biāo)準(zhǔn)5篇
- 反面典型案例剖析材料范文(通用6篇)
- 水利混凝土試塊強(qiáng)度計(jì)算評定表
- 人教版數(shù)學(xué)五年級上冊期末復(fù)習(xí)操作題專項(xiàng)集訓(xùn)(含答案)
- 通達(dá)信公式編寫學(xué)習(xí)資料
評論
0/150
提交評論