版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognitionChapter22/6/20231王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.1引言2.1.1問題表述2/6/20232王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.1引言2.1.2全概率公式和貝葉斯準(zhǔn)則2/6/20233王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.1引言2.1.2全概率公式和貝葉斯準(zhǔn)則2/6/20234王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.1引言
2.1.2全概率公式和貝葉斯準(zhǔn)則2/6/20235王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.1貝葉斯決策的原理2/6/20236王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.1貝葉斯決策的原理2/6/20237王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.2最小化分類錯(cuò)誤率可以證明,貝葉斯分類器在分類錯(cuò)誤率最小化方面最優(yōu):由貝葉斯規(guī)則:由概率密度函數(shù)的定義:和并以上兩式可以得到:2/6/20238王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.2最小化分類錯(cuò)誤率2/6/20239王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.2最小化分類錯(cuò)誤率Indeed:MovingthethresholdthetotalshadedareaINCREASESbytheextra“grey”area.2/6/202310王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.3最小化分類平均風(fēng)險(xiǎn)分類錯(cuò)誤率最小并非總是最好的,某些情況下有些錯(cuò)誤會(huì)產(chǎn)生更嚴(yán)重的后果,因此用“損失”來衡量錯(cuò)誤有時(shí)候更符合實(shí)際。(2-10)(2-11)2/6/202311王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.3最小化分類平均風(fēng)險(xiǎn)(2-12)(2-13)按極小值原理求解(2-11),必須使積分的每一項(xiàng)最小,因此應(yīng)選擇:設(shè)M=2,則有:(2-14)2/6/202312王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
2.2.3最小化分類平均風(fēng)險(xiǎn)(2-15)按照常規(guī),對于正確分類的懲罰應(yīng)小于錯(cuò)誤分類的懲罰,即?。阂罁?jù)假設(shè),(2-12)式在兩類情況下可以表示為:其中,比率稱為似然比(Likelihood),(2-15)式稱為似然比檢驗(yàn)。當(dāng)取表示正確分類懲罰為零,2中的樣本錯(cuò)誤地分到1懲罰更大,則2/6/202313王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
例2-1Thenthethresholdvalueis:Threshold forminimumr2/6/202314王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.2貝葉斯決策理論
例2-1Thusmovestotheleftof(WHY?)Considerthereversesituationwhenthemovestotherightof?2/6/202315王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.3判別函數(shù)和決策面(DiscriminantFunctions&DecisionSurfaces)
(2-16)(2-17)(2-18)2/6/202316王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.3判別函數(shù)和決策面(DiscriminantFunctions&DecisionSurfaces)
Ingeneral,discriminantfunctions(判別函數(shù))canbedefinedindependentof
theBayesianrule.Theyleadtosuboptimalsolutions,yetifchosenappropriately,canbecomputationallymoretractable(容易的).——SergiosTheodoridis-PatternRecognition2/6/202317王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
(2-19)MultivariateGaussianpdf(ProbabilityDistributionFunction-pdf)(隨機(jī)變量x的均值或期望)(x的協(xié)方差矩陣,CovarianceMatrix)(x的概率分布)函數(shù)ln(·)是單調(diào)的,定義:2/6/202318王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
(2-20)式(2-19)可以寫成:其中,常數(shù)Ci為:2/6/202319王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
(2-21)將式(2-20)展開可以寫成:一般地,上式是一個(gè)非線性二次型,例如,對于:的情況,假設(shè):
式(2-21)又可以表示成:(2-22)2/6/202320王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
Thatis,
isquadratic(二次的)
andthesurfacesarequadrics(二次的),
maybe
ellipsoids(橢圓),parabolas(拋物線),hyperbolas(雙曲線),pairsoflines(直線對).Forexample:(圖2-4(a))(圖2-4(b))2/6/202321王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
圖2-4二次決策曲線的例子,(a)橢圓;(b)雙曲線2/6/202322王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.1決策超平面(DecisionHyperplanes)Quadraticterms:
IfALL (thesame),thequadratictermsarenotofinterest.Theyarenotinvolvedincomparisons.Then,equivalently,wecanwrite:DiscriminantfunctionsareLINEAR(2-23)(2-24)(2-25)2/6/202323王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.1決策超平面(DecisionHyperplanes)(2-26)(2-27)(2-28)(2-29)2/6/202324王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.1決策超平面(DecisionHyperplanes)決策平面是一個(gè)通過的超平面,當(dāng)概率時(shí),,超平面經(jīng)過均值點(diǎn)2/6/202325王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.1決策超平面(DecisionHyperplanes)圖2-5兩類情況下的決策線和的正態(tài)分布向量2/6/202326王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.1決策超平面(DecisionHyperplanes)圖2-6決策線(a)分布致密類;(b)分布非致密類(a)(b)2/6/202327王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.1決策超平面(DecisionHyperplanes)(2-30)(2-31)2/6/202328王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.2最小距離分類器(MinimumDistanceClassifiers)(2-32)換個(gè)角度考慮,假設(shè)等概率類(equiprobable)忽略常量的決策超平面可以表達(dá)為(參考講義(2-20)或教材(2-26)):協(xié)方差矩陣為對角時(shí)IfEuclideanDistanceSmallerthan也即,此時(shí)特征向量可以根據(jù)它們與均值點(diǎn)之間的歐氏距離來分類。2/6/202329王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.2最小距離分類器(MinimumDistanceClassifiers)協(xié)方差矩陣為非對角時(shí)IfMahalanobis
DistanceSmallerthan
在這種情況下,常量距離
的曲線是橢圓(或者超橢圓)因?yàn)閰f(xié)防差矩陣的對稱性,可以通過歸一劃使協(xié)防差矩陣對角化:2/6/202330王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.4正態(tài)分布的貝葉斯分類(BayesianClassifierforNormalDistributions)
2.4.2最小距離分類器(MinimumDistanceClassifiers)圖2-7a)等歐幾里德曲線;b)等Mahalanobis曲線2/6/202331Example:2/6/202332王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.1最大似然參數(shù)估計(jì)(ParametersEstimationofMaximumLikelihood-ML)2/6/202333王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.1最大似然參數(shù)估計(jì)(ParametersEstimationofMaximumLikelihood-ML)2/6/202334王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
圖2-8極大似然估計(jì)2.5.1最大似然參數(shù)估計(jì)(ParametersEstimationofMaximumLikelihood-ML)2/6/202335Example:2/6/202336王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.2最大后驗(yàn)概率估計(jì)(EstimationofMaximumAposterioriProbability-MAP)InMaximumLikelihoodmethod,wasconsideredasaparameter;Hereweshalllookatasarandomvectordescribedbyapdf(概率分布函數(shù))p(),assumedtobeknownGivenComputethemaximumof2/6/202337王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
FromBayestheorem
TheMethod2.5.2最大后驗(yàn)概率估計(jì)(EstimationofMaximumAposterioriProbability-MAP)2/6/202338王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
圖2-9對于的最大似然估計(jì)和最大后驗(yàn)概率估計(jì)a)中基本相同;b)中差別較大2.5.2最大后驗(yàn)概率估計(jì)(EstimationofMaximumAposterioriProbability-MAP)2/6/202339Example:2/6/202340王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.3貝葉斯推論(BayesianInference)2/6/202341王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.3貝葉斯推論(BayesianInference)Abitmoreinsightviaanexample:2/6/202342王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.3貝葉斯推論(BayesianInference)圖2-10上述表達(dá)就是當(dāng)N→∞時(shí)的高斯分布序列2/6/202343王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.4最大熵估計(jì)(MaximumEntropyEstimation)熵的概念來源于香農(nóng)的信息論,它是關(guān)于事件不確定性(或無序性)的度量,或者是系統(tǒng)輸出信息中的隨機(jī)性的度量。熵的定義:(2-33)根據(jù)Jaynes[Jayn82]陳述的最大熵原理,在約束條件下,這樣的估計(jì)符合最大可能隨機(jī)性的分布。2/6/202344王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.4最大熵估計(jì)(MaximumEntropyEstimation)Example:Constraint:LagrangeMultipliers:2/6/202345王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.4最大熵估計(jì)(MaximumEntropyEstimation)取導(dǎo)數(shù)為零得到:由約束條件可以得到:于是得到ME.pdf:結(jié)論:未知概率密度的最大熵估計(jì)都服從均勻分布(UniformDistribution),可以證明,若將均值和方差作為第二、三個(gè)約束,在正負(fù)無窮范圍內(nèi),最大熵估計(jì)的結(jié)果都是高斯分布,這是MaximumEntropyEstimation的精髓。2/6/202346王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.5混合模型(MixtureModels)還可以通過密度函數(shù)的線性合并獲取未知的pdf:意為:一個(gè)J分布符合p(x),則可認(rèn)為每一點(diǎn)x都可能以概率Pj屬于J模型分布。該模型可以接近任意連續(xù)密度函數(shù),只需要有足夠數(shù)量的混合J和適當(dāng)?shù)膮?shù)。Assumeparametricmodeling,i.e.,(2-34)2/6/202347王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.5混合模型(MixtureModels)ThegoalistoestimategivenasetWhynotML(極大似然)?Asbefore?這是因?yàn)槲粗獏?shù)以非線性形式出現(xiàn)在最大化過程中導(dǎo)致計(jì)算困難,必須采用非線性優(yōu)化迭代技術(shù)。復(fù)雜的原因是缺乏關(guān)于已知樣本的類標(biāo)簽,即混合體中每一個(gè)樣本所屬的類。沒有標(biāo)簽信息使得這一任務(wù)成為一個(gè)典型的具有不完全數(shù)據(jù)集的任務(wù)??梢钥紤]采用期望值最大算法(ExpectationMaximization,EM)2/6/202348王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.5混合模型(MixtureModels)TheExpectation-Maximization(EM)algorithmGeneralformulation:whichare
notobserveddirectly.Weobserve:
amanytoonetransformation2/6/202349王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.5混合模型(MixtureModels)WhatweneedistocomputeButarenotobserved.HerecomestheEM.Maximizethe
expectationofthelog-likelihood
conditionedontheobservedsamplesandthecurrentiterationestimateof
Thealgorithm:(2-35)(2-36)2/6/202350王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.5混合模型(MixtureModels)ApplicationtothemixturemodelingproblemAssumingmutualindependence(假設(shè)相互獨(dú)立)則對數(shù)似然函數(shù)為:(2-37)2/6/202351王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.5混合模型(MixtureModels)2/6/202352王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)圖2-11直方圖方法估計(jì)概率密度近似值;a)細(xì)劃分;b)粗劃分2/6/202353王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)(2-38)2/6/202354王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)ParzenWindowsMethod在一個(gè)超立方體中分割多維空間,定義函數(shù):(2-39)圖2-12在超立方體內(nèi)定義多維空間也即,在以原點(diǎn)為中心的單位超立方體內(nèi)的所有點(diǎn)的函數(shù)為1,其余為零。2/6/202355王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)于是可以將一維的概率密度函數(shù)表達(dá)式(2-38)改寫為:(2-40)上述公式的解釋:落在以x為中心的單位超方體內(nèi)的試驗(yàn)點(diǎn)總數(shù)KN除以體積和總個(gè)數(shù),但問題是不連續(xù)而p(x)連續(xù)。可以通過擴(kuò)展不連續(xù)函數(shù)得到一個(gè)近似的連續(xù)函數(shù)p(x),但是這種不連續(xù)必然影響p(x)的平滑性質(zhì)。Parzen窗就是使用平滑的函數(shù)代替原來不連續(xù)的函數(shù)從而生成(2-40)式。2/6/202356王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)Parzenwindows-kernels-potentialfunctions:(2-41)Meanvalue:(2-42)Henceunbiasedinthelimit,independentwithbigorsmallofN.2/6/202357王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)Variance:Thesmallerthehthehigherthevariance圖2-13Parzen窗計(jì)算概率密度函數(shù),樣本數(shù)N=1000;a)h=0.1b)h=0.82/6/202358王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)Variance:ThehighertheNthebettertheaccuracy圖2-14Parzen窗計(jì)算概率密度函數(shù),h=0.8N=1000N=200002/6/202359王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)分類方法,回憶:(2-43)采用Parzen窗的分類公式為:2/6/202360王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)CURSEOFDIMENSIONALITYInallthemethods,sofar,wesawthatthehighestthenumberofpoints,
N,thebettertheresultingestimate.Ifintheone-dimensionalspaceaninterval,filledwith
N
points,isadequately(充分)(forgoodestimation),inthetwo-dimensionalspacethecorrespondingsquarewillrequireN2
andinthe?-dimensionalspacethe?-dimensionalcubewillrequireN?points.Theexponentialincreaseinthenumberofnecessarypointsinknownasthecurseofdimensionality.Thisisamajorproblemoneisconfrontedwithinhighdimensionalspaces.2/6/202361王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)NA?VE(簡易的)–BAYESCLASSIFIERLetandthegoalistoestimatei=1,2,…,M.Fora“good”estimateofthepdfonewouldneed,say,N?points.Assumex1,x2,…,
x?
mutuallyindependent.Then:Inthiscase,onewouldrequire,roughly,N
pointsforeachpdf.Thus,anumberofpointsoftheorderN·?wouldsuffice.ItturnsoutthattheNa?ve–Bayesclassifierworksreasonablywellevenincasesthatviolate(破壞、不滿足)theindependenceassumption.(2-44)2/6/202362王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)KNearestNeighborDensityEstimation(K-最近鄰密度分類)InParzen:ThevolumeisconstantThenumberofpointsinthevolumeisvaryingNow:KeepthenumberofpointsconstantLeavethevolumetobevarying2/6/202363王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)K-最近鄰密度分類結(jié)果解釋:在高密度區(qū),體積小,低密度區(qū),體積大。如果采用Mahalanobis距離,則得到超球面空間的超橢圓體圖2-15K-近鄰密度估計(jì);a)密度大體積小b)密度小體積大(2-45)2/6/202364王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)最近鄰規(guī)則(TheNearestNeighborRule)給定一個(gè)未知特征向量x和一種距離測量方法,于是:在N個(gè)訓(xùn)練向量之外,不考慮類的標(biāo)簽來確定k近鄰。在兩類的情況下,k選為奇數(shù),一般不是類M的倍數(shù);在k個(gè)樣本之外,確定屬于ωi(i=1,2,…M)類的向量的個(gè)數(shù)ki,顯然∑iki=k;x屬于樣本最大值ki的那一類ωi,也即在訓(xùn)練樣本數(shù)足夠大時(shí),這種簡單規(guī)則具有良好性能。當(dāng)N→∞,用PB表示最優(yōu)Bayes理論錯(cuò)誤率,最近鄰規(guī)則的分類錯(cuò)誤率PNN由下式約束:(2-46)2/6/202365王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.5未知概率密度函數(shù)的估計(jì)(EstimationofUnknownProbabilityDensityFunctions)
2.5.6非參數(shù)估計(jì)(NonparametricEstimation)
ForsmallPB:2/6/202366王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.6貝葉斯網(wǎng)絡(luò)(BayesianNetworks)
2.6.1貝葉斯概率鏈規(guī)則(BayesProbabilityChainRule)(2-47)(2-48)現(xiàn)假設(shè)每個(gè)隨機(jī)變量xi的條件依賴性被限制于各自的乘積表達(dá)式中出現(xiàn)的特征子集,例如說:其中:具體假設(shè)例如l=6,于是可以假定:則:TheaboveisageneralizationoftheNa?ve–Bayes.FortheNa?ve–Bayestheassumptionis:Ai=?,fori=1,2,…,?2/6/202367王杰(博士/教授/博導(dǎo))鄭州大學(xué)電氣工程學(xué)13837106273wj@模式識(shí)別PatternRecognition
Ch.2分類器-基于Bayes決策理論
2.6貝葉斯網(wǎng)絡(luò)(BayesianNetworks)
2.6.1貝葉斯概率鏈規(guī)則(BayesProbabilityChainRule)Agraphicalwaytoportray(描繪)conditionaldependenciesisgivenbelowAccordingtothisfigurewehavethat:x6isconditionallydependentonx4,x5.x5
on
x4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國斜交錯(cuò)波紋填料資金申請報(bào)告
- 華東師大版七年級下冊數(shù)學(xué)教學(xué)計(jì)劃
- 政府機(jī)關(guān)綠化養(yǎng)護(hù)服務(wù)方案
- 高空作業(yè)安全風(fēng)險(xiǎn)辨識(shí)及管控措施
- 節(jié)假日家庭消費(fèi)商品展銷方案
- 警銜晉升培訓(xùn)心得體會(huì)
- 工程監(jiān)理課程設(shè)計(jì)總結(jié)
- 人教版一年級上冊語文教學(xué)計(jì)劃
- 人教版小學(xué)語文三年級下冊教學(xué)計(jì)劃
- 企業(yè)績效考核管理制度優(yōu)化方案
- 設(shè)備維保的安全操作與個(gè)人防護(hù)措施
- 多導(dǎo)睡眠報(bào)告
- 景德鎮(zhèn)陶瓷報(bào)告
- 降低針刺傷發(fā)生率品管圈課件
- 單招考試物理基礎(chǔ)知識(shí)梳理
- 降低墜床跌倒品管圈課件
- 壓瘡QCC匯報(bào) 降低壓瘡事件的發(fā)生率品管圈護(hù)理課件
- 初中九年級數(shù)學(xué)課件-反比例函數(shù)k的幾何意義
- 2024年P(guān)C行業(yè)分析報(bào)告及未來發(fā)展趨勢
- 壓鑄產(chǎn)品噴漆技巧培訓(xùn)課件
- 廣東省佛山市順德區(qū)2023-2024學(xué)年九年級上學(xué)期期末考試語文試題(含答案)
評論
0/150
提交評論