版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年廣西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.2.設(shè)向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
D.答案:A3.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=14.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()
A.a(chǎn)<b<c<d
B.a(chǎn)<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C5.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.6.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()
A.x2+2y2=16
B.x2+4y2=16
C.2x2+y2=16
D.4x2+y2=16答案:D7.已知x,y之間的一組數(shù)據(jù):
x0123y1357則y與x的回歸方程必經(jīng)過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點是(1.5,4)根據(jù)線性回歸方程一定過樣本中心點,∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,4)故選C8.如果雙曲線的焦距為6,兩條準(zhǔn)線間的距離為4,那么該雙曲線的離心率為()
A.
B.
C.
D.2答案:C9.如果消息M發(fā)生的概率為P(M),那么消息M所含的信息量為I(M)=log2[P(M)+],若小明在一個有4排8列座位的小型報告廳里聽報告,則發(fā)布的以下4條消費中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C10.設(shè)O為坐標(biāo)原點,F(xiàn)為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標(biāo)是
(
)A.B.C.D.答案:B解析:略11.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()
A.
B.
C.
D.答案:B12.在△ABC中,AB=2,AC=1,D為BC的中點,則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.13.設(shè)a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當(dāng)且僅當(dāng)a=b=c時,等號成立.14.在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個紅球的事件包括C22+C21C31=7個基本事件,根據(jù)古典概型公式得到P=710,故為:710.15.已知兩點P(4,-9),Q(-2,3),則直線PQ與y軸的交點分有向線段PQ的比為______.答案:直線PQ與y軸的交點的橫坐標(biāo)等于0,由定比分點坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點分有向線段PQ的比為
λ=2,故為:2.16.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;
②長江上某水文站觀察到一天中的水位X;
③某超市一天中的顧客量X.
其中的X是連續(xù)型隨機變量的是()
A.①
B.②
C.③
D.①②③答案:B17.圓的極坐標(biāo)方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標(biāo)是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標(biāo)是(1,-π3).故為(1,-π3).18.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設(shè)在第1組中隨機抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.故為:6.19.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.20.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫出其中次品數(shù)ξ的概率分布.答案:依題意,隨機變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:21.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設(shè)正確的是()
A.a(chǎn)3<b3
B.a(chǎn)3<b3或a3=b3
C.a(chǎn)3<b3且a3=b3
D.a(chǎn)3>b3答案:B22.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571423.給出下列問題:
(1)求面積為1的正三角形的周長;
(2)求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù);
(3)求鍵盤所輸入兩個數(shù)的最小數(shù);
(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時的函數(shù)值.
其中不需要用條件語句描述的算法的問題有()A.1個B.2個C.3個D.4個答案:(1)求面積為1的正三角形的周長用順序結(jié)構(gòu)即可,故不需要用條件語句描述;(2)求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù)用順序結(jié)構(gòu)即可解決問題,不需要用條件語句描述;(3)求鍵盤所輸入兩個數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問題的解決要用到條件語句描述;(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時的函數(shù)值,由于此函數(shù)是一個分段函數(shù),所以要用條件結(jié)構(gòu)選擇相應(yīng)的函數(shù)解析式,需要用條件語句描述.綜上,(3)(4)兩個問題要用到條件語句描述,(1),(2)不需要用條件語句描述故選B24.如圖,四面體ABCD中,點E是CD的中點,記=(
)
A.
B.
C.
D.
答案:B25.已知直線l:kx-y+1+2k=0.
(1)證明:直線l過定點;
(2)若直線l交x負(fù)半軸于A,交y正半軸于B,△AOB的面積為S,試求S的最小值并求出此時直線l的方程.答案:(1)證明:由已知得k(x+2)+(1-y)=0,∴無論k取何值,直線過定點(-2,1).(2)令y=0得A點坐標(biāo)為(-2-1k,0),令x=0得B點坐標(biāo)為(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.當(dāng)且僅當(dāng)4k=1k,即k=12時取等號.即△AOB的面積的最小值為4,此時直線l的方程為12x-y+1+1=0.即x-2y+4=026.用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應(yīng)假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,先把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,而命題:“三角形三個內(nèi)角至少有一個不大于60°”的否定為“三個內(nèi)角都大于60°”,故為三個內(nèi)角都大于60°.27.曲線(θ為參數(shù))上的點到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D28.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時,對應(yīng)的斜率k=tan30°=33故選:C.29.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標(biāo)原點O,分別以射線OB,OC,AA1的指向為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系.試寫出正方體八個頂點的坐標(biāo).答案:解設(shè)i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標(biāo)向量.因為底面正方形的中心為O,邊長為2,所以O(shè)B=2.由于點B在x軸的正半軸上,所以O(shè)B=2i,即點B的坐標(biāo)為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以O(shè)B1=(2,0,2).即點B1的坐標(biāo)為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).30.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(
)
A.
B.
C.7
D.答案:D31.某公司招聘員工,經(jīng)過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計算,計算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應(yīng)聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時,y=2x+10∈(30,210],又因為60∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.32.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1
200人,女學(xué)生1
000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19233.以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是()
A.相交
B.相切
C.相離
D.不能確定答案:C34.若直線y=x+b與圓x2+y2=2相切,則b的值為(
)
A.±4
B.±2
C.±
D.±2
答案:B35.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點與點P的距離的平方,顯然當(dāng)O,P,M共線且P在O,M之間時,|OP|最小,此時|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.36.當(dāng)太陽光線與水平面的傾斜角為60°時,要使一根長為2m的細(xì)桿的影子最長,則細(xì)桿與水平地面所成的角為()
A.15°
B.30°
C.45°
D.60°答案:B37.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對答案:B38.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D39.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,40.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B41.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間產(chǎn)品較穩(wěn)定.答案:(1)因為間隔時間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因為.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.42.如圖:已知圓上的弧
AC=
BD,過C點的圓的切線與BA的延長線交于E點,證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)43.參數(shù)方程中當(dāng)t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=144.選修4-4參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設(shè)得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.45.已知向量=(1,2),=(2,x),且=-1,則x的值等于()
A.
B.
C.
D.答案:D46.一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎“即為“第一次摸到的2個白球,第二次至少有1個紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.47.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}48.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進(jìn)行測試,設(shè)第X次首次測到正品,則P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B49.已知M(-2,7)、N(10,-2),點P是線段MN上的點,且PN=-2PM,則P點的坐標(biāo)為______.答案:設(shè)P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點的坐標(biāo)為(2,4).故為:(2,4)50.(本題10分)設(shè)函數(shù)的定義域為A,的定義域為B.(1)求A;
(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略第2卷一.綜合題(共50題)1.已知P:2+2=5,Q:3>2,則下列判斷錯誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯誤.故選C.2.某公司招聘員工,經(jīng)過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計算,計算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應(yīng)聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時,y=2x+10∈(30,210],又因為60∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.3.下列命題中為真命題的是(
)
A.平行直線的傾斜角相等
B.平行直線的斜率相等
C.互相垂直的兩直線的傾斜角互補
D.互相垂直的兩直線的斜率互為相反數(shù)答案:A4.兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()
A.兩個球
B.兩個長方體
C.兩個圓柱
D.兩個圓錐答案:A5.某農(nóng)科所種植的甲、乙兩種水稻,連續(xù)六年在面積相等的兩塊稻田中作對比試驗,試驗得出平均產(chǎn)量==415㎏,方差是=794,=958,那么這兩個水稻品種中產(chǎn)量比較穩(wěn)定的是()
A.甲
B.乙
C.甲、乙一樣穩(wěn)定
D.無法確定答案:A6.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(2,16)則a的值是()A.14B.12C.2D.4答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.7.下列命題:
①用相關(guān)系數(shù)r來刻畫回歸的效果時,r的值越大,說明模型擬合的效果越好;
②對分類變量X與Y的隨機變量的K2觀測值來說,K2越小,“X與Y有關(guān)系”可信程度越大;
③兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近1;
其中正確命題的序號是
______.(寫出所有正確命題的序號)答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯誤,②對分類變量X與Y的隨機變量的K2觀測值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近1;故③正確,故為:③8.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,59.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范圍是[-22,22].(10分)10.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.11.已知圖形F上的點A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(
)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點坐標(biāo)代入可得B,點的坐標(biāo)為.所以選D.12.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設(shè)正三角形的標(biāo)出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2413.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個數(shù)為()
A.432
B.288
C.216
D.108答案:C14.橢圓的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,兩頂點分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點在x軸上,設(shè)為x2a2+y2b2=1∵橢圓的兩頂點分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標(biāo)準(zhǔn)方程為:x29+y22=1.故為:x29+y22=1.15.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識,某中學(xué)高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)下面的頻率分布表,解答下列問題:
序號
(i)分組
(分?jǐn)?shù))本組中間值
(Gi)頻數(shù)
(人數(shù))頻率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
計501(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于85分的同學(xué)能獲獎,請估計在參賽的800名學(xué)生中大概有多少同學(xué)獲獎?
(3)請根據(jù)頻率分布表估計該校高二年級參賽的800名同學(xué)的平均成績.答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計平均成績?yōu)?1分.(12分)16.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略17.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C18.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B19.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當(dāng)0<a<1時函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當(dāng)a>1時函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.20.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.21.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A22.求證:定義在實數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個交點…(2分)設(shè)交點的橫坐標(biāo)分別為x1,x2,且x1<x2.因為函數(shù)y=f(x)在實數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.
…(12分)故原命題成立.…(14分)23.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線
y=x-2交于D、E兩點,求線段DE的中點坐標(biāo)及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線
y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設(shè)D、E兩點的坐標(biāo)分別為(x1,y1
)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標(biāo)為M(-2,4),DE=1+1?|x1-x2|=2?(x1
+x2)2-4x1
?x2
=216-4(-6)=45.24.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.25.b1是[0,1]上的均勻隨機數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機數(shù).答案:∵b1是[0,1]上的均勻隨機數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機數(shù),故為:[-6,-3]26.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.27.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對應(yīng)的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應(yīng)的點在第四象限,故選D.28.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.29.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)30.點M的直角坐標(biāo)是(,-1),在ρ≥0,0≤θ<2π的條件下,它的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(,)
D.(,)答案:A31.設(shè)斜率為2的直線l過拋物線y2=ax(a>0)的焦點F,且和y軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為4,則拋物線的方程為______.答案:焦點坐標(biāo)(a4,0),|0F|=a4,直線的點斜式方程y=2(x-a4)在y軸的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故為:y2=8x32.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}33.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點中不在曲線C上的是()
A.(0,0)
B.(2a,4a)
C.(3a,3a)
D.(-3a,-a)答案:B34.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B35.某自動化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領(lǐng)導(dǎo)是()
A.副總經(jīng)理(甲)
B.副總經(jīng)理(乙)
C.總經(jīng)理
D.董事會
答案:B36.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復(fù)數(shù)z為純虛數(shù).故為:2.37.若f(x)=ax(a>0且a≠1)的反函數(shù)g(x)滿足:g()<0,則函數(shù)f(x)的圖象向左平移一個單位后的圖象大致是下圖中的()
A.
B.
C.
D.
答案:B38.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.39.節(jié)假日時,國人發(fā)手機短信問候親友已成為一種時尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問候的信息條數(shù)為()
A.27
B.37
C.38
D.8答案:A40.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17841.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()
A.線段或銳角三角形
B.線段與直角三角形
C.線段或鈍角三角形
D.線段、銳角三角形、直角三角形或鈍角三角形答案:B42.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B43.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時,盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.44.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C45.已知A(1,2),B(-3,b)兩點的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-246.在極坐標(biāo)系中,若點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,則ρ0=______.答案:∵點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.47.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()
A.(1)的假設(shè)錯誤,(2)的假設(shè)正確
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確,(2)的假設(shè)錯誤
D.(1)與(2)的假設(shè)都錯誤答案:A48.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:249.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B50.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.第3卷一.綜合題(共50題)1.點(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D2.如圖,已知△ABC,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC.則AM:BM=()
A.2
B.4
C.6
D.7
答案:D3.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.4.已知一個四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因為三視圖復(fù)原的幾何體是正四棱錐,底面邊長為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.5.用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設(shè)正確的是()
A.假設(shè)至少有一個鈍角
B.假設(shè)沒有一個鈍角
C.假設(shè)至少有兩個鈍角
D.假設(shè)沒有一個鈍角或至少有兩個鈍角答案:C6.下列四個函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項A.選項B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對應(yīng)關(guān)系,故是同一個函數(shù),故選項B滿足條件.選項C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個函數(shù),故排除選項C.選項D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個函數(shù),故排除選項D,故選B.7.方程組的解集是()
A.{-1,2}
B.(-1,2)
C.{(-1,2)}
D.{(x,y)|x=-1或y=2}答案:C8.設(shè)非零向量、、滿足||=||=||,+=,則<,>=()
A.150°
B.120°
C.60°
D.30°答案:B9.(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.10.等于()
A.a(chǎn)16
B.a(chǎn)8
C.a(chǎn)4
D.a(chǎn)2答案:C11.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D12.設(shè)二項式(33x+1x)n的展開式的各項系數(shù)的和為P,所有二項式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項式(33x+1x)n的展開式的所有二項式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.13.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質(zhì)一定成立的所有序號是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.14.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()
A.
B.
C.
D.2答案:C15.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實數(shù)),則b=()
A.-2
B.2
C.-8
D.8答案:C16.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8
月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進(jìn)行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.17.過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為______.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當(dāng)切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-3k+5=0,由點到直線的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線方程為:3x+4y-29=0;當(dāng)切線的斜率不存在時,直線為:x=3,滿足圓心(2,3)到直線x=3的距離為圓的半徑1,x=3也是切線方程;故為:3x+4y-29=0或x=3.18.P是直線3x+y+1=0上一點,P到點Q(0,2)距離的最小值是______.答案:過點Q作直線的垂線段,當(dāng)P是垂足時,線段PQ最短,故最小距離是點Q(0,2)到直線3x+y+1=0的距離d,d=|0+2+1|3+1=32=1.5.∴P到點Q(0,2)距離的最小值是1.5;故為1.5.19.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個交點,故k=f(x)x(x>0)可分別有2,3,4個解.故n的取值范圍為2,3,4.故選B.20.用0.618法確定的試點,則經(jīng)過(
)次試驗后,存優(yōu)范圍縮小為原來的0.6184倍.答案:521.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:222.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B23.平面內(nèi)有兩定點A、B及動點P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A.B為焦點的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A.B為焦點的橢圓∵當(dāng)一個動點到兩個頂點距離之和等于定值時,再加上這個和大于兩個定點之間的距離,可以得到動點的軌跡是橢圓,沒有加上的條件不一定推出,而點P的軌跡是以A.B為焦點的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.24.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應(yīng),這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應(yīng)1或2個y故選B.25.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.26.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是
______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.27.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.28.設(shè)b是a的相反向量,則下列說法錯誤的是()
A.a(chǎn)與b的長度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C29.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.30.求證:若圓內(nèi)接四邊形的兩條對角線互相垂直,則從對角線交點到一邊中點的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點為原點O、對角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)
設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點E(c2,d2),AB的中點H(-a2,-b2).又圓心G到四個頂點的距離相等,故圓心G的橫坐標(biāo)等于AC中點的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.31.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的反設(shè)為()
A.a(chǎn),b,c中至少有兩個偶數(shù)
B.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)
C.a(chǎn),b,c都是奇數(shù)
D.a(chǎn),b,c都是偶數(shù)答案:B32.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A33.設(shè)集合A={x|},則A∩B等于(
)
A.
B.
C.
D.答案:B34.下列有關(guān)相關(guān)指數(shù)R2的說法正確的有()
A.R2的值越大,說明殘差平方和越小
B.R2越接近1,表示回歸效果越差
C.R2的值越小,說明殘差平方和越小
D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A35.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C36.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點中不在曲線C上的是()
A.(0,0)
B.(2a,4a)
C.(3a,3a)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 攝影攝像合同范本高清3篇
- 旅游公司勞動合同原件3篇
- 市政府易用采購合同模板3篇
- 數(shù)據(jù)中心運維支持合同3篇
- 教育科技公司專用章制作合同3篇
- 摩托車轉(zhuǎn)讓合同協(xié)議書3篇
- 招標(biāo)文件附件格式要求3篇
- 教育機構(gòu)物業(yè)租賃合同3篇
- 撤訴授權(quán)書格式與撰寫要點3篇
- 安徽酒店業(yè)勞動合同樣本3篇
- DB33_T 2288-2020淡水池塘養(yǎng)殖尾水處理技術(shù)規(guī)范(高清正版)
- 渡槽工程施工組織設(shè)計及對策
- 施工試驗檢測計劃
- 上海小學(xué)一二年級英語單詞匯總
- 小學(xué)體育知識樹PPT課件(帶內(nèi)容)
- 汽車標(biāo)準(zhǔn)件手冊
- 全球試驗室儀器耗材國際品牌簡介
- 瀝青配合比匯總
- 追求“真實、樸實、扎實”的語文課堂
- 工業(yè)機器人論文
- UC2845的應(yīng)用和PWM變壓器設(shè)計
評論
0/150
提交評論