2023年慶陽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年慶陽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年慶陽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年慶陽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年慶陽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年慶陽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.四面體ABCD中,設(shè)M是CD的中點,則化簡的結(jié)果是()

A.

B.

C.

D.答案:A2.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()

A.

B.

C.2

D.2

答案:D3.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因為θ∈R,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).4.命題“對于正數(shù)a,若a>1,則lg

a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個數(shù)為()A.0B.1C.2D.4答案:原命題“對于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.5.已知定義在實數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之間的大小關(guān)系為()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)∴|x|越大,函數(shù)值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故選A6.下列命題中,正確的是()

A.若a∥b,則a與b的方向相同或相反

B.若a∥b,b∥c,則a∥c

C.若兩個單位向量互相平行,則這兩個單位向量相等

D.若a=b,b=c,則a=c答案:D7.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線;

(2)若AB=6,AE=245,求BD和BC的長.答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.8.已知圓C:x2+y2-4x-5=0.

(1)過點(5,1)作圓C的切線,求切線的方程;

(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點,其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直線方程為

x+y-4=0-----------------(14分)9.若橢圓長軸長與短軸長之比為2,它的一個焦點是(215,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:由題設(shè)條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標(biāo)準(zhǔn)方程是x280+y220=1.故為:x280+y220=1.10.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,則∴左邊=≥=.∴原不等式成立.11.如圖,割線PAB經(jīng)過圓心O,PC切圓O于點C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點C,∴根據(jù)切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設(shè)△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π12.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.13.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B14.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D15.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A16.若點M,A,B,C對空間任意一點O都滿足則這四個點()

A.不共線

B.不共面

C.共線

D.共面答案:D17.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C18.(本小題滿分12分)

如圖,已知橢圓C1的中心在圓點O,長軸左、右端點M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C1交于兩點,這四點按縱坐標(biāo)從大到小依次為A、B、C、D.

(I)設(shè)e=,求|BC|與|AD|的比值;

(II)當(dāng)e變化時,是否存在直線l,使得BO//AN,并說明理由.答案:(II)t=0時的l不符合題意,t≠0時,BO//AN當(dāng)且僅當(dāng)BO的斜率kBO與AN的斜率kAN相等,即,解得。因為,又,所以,解得。所以當(dāng)時,不存在直線l,使得BO//AN;當(dāng)時,存在直線l使得BO//AN。解析:略19.設(shè)平面α內(nèi)兩個向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B20.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點,若從M點繞圓柱體的側(cè)面到達N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點繞圓柱體的側(cè)面到達N點,實際上是從側(cè)面展開圖的長方形的一個頂點M到達不相鄰的另一個頂點N.而兩點間以線段的長度最短.所以最短路線就是側(cè)面展開圖中長方形的一條對角線.如圖所示.21.從5名男學(xué)生、3名女學(xué)生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時,有C32C51=15種結(jié)果,當(dāng)包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.22.已知m,n為正整數(shù).

(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時,(1+x)m≥1+mx;

(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;

(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學(xué)歸納法證明:(?。┊?dāng)m=1時,原不等式成立;當(dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時,不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時,不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時,3≠4,等式不成立;當(dāng)n=2時,32+42=52,等式成立;當(dāng)n=3時,33+43+53=63,等式成立;當(dāng)n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.23.直線ax+by=1與圓x2+y2=1有兩不同交點,則點P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點,∴1a2+b2<1即a2+b2>1.故為:點在圓外.24.對于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”現(xiàn)有四個函數(shù):

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數(shù)有()A.①②B.②③C.③④D.②④答案:①對于函數(shù)f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有ea=a,eb=b,即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點,這與即y=ex和y=x的圖象沒有公共點相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=x3∈[0,1].③對于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=sinπ2x∈[0,1].④對于f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有l(wèi)na=a,且lnb=b,即方程lnx=x有兩個解,即y=lnx

和y=x的圖象有兩個交點,這與y=lnx和y=x的圖象沒有公共點相矛盾,故④不存在“穩(wěn)定區(qū)間”.故選B.25.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動點,F(xiàn)1、F2為橢圓焦點,延長F2M至點B,則ρF1MB的外角的平分線為MN,過點F1作

F1Q⊥MN,垂足為Q,當(dāng)點M在橢圓上運動時,則點Q的軌跡方程是______.答案:點F1關(guān)于∠F1MF2的外角平分線MQ的對稱點N在直線F1M的延長線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長軸長),又OQ是△F2F1N的中位線,故|OQ|=a,點Q的軌跡是以原點為圓心,a為半徑的圓,點Q的軌跡方程是x2+y2=a2故為:x2+y2=a226.設(shè)拋物線C:y2=3px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C27.如圖程序運行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時,不滿足“s<10”,則輸出n的值2故為:228.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計的一個程序空白框圖,將空白處補上.

①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計的一個程序,由于第一次執(zhí)行循環(huán)時的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計數(shù)變量i為2,步長為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.29.拋物線y=14x2的焦點坐標(biāo)是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點坐標(biāo)是(0,1),故為(0,1).30.設(shè)P、Q為兩個非空實數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個數(shù),b可以為1,2,6三個數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個元素.故為8.31.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3532.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項系數(shù)m>0,故選C.33.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點P的坐標(biāo)為(2,1),那么()

A.點P在直線L上,但不在圓M上

B.點P在圓M上,但不在直線L上

C.點P既在圓M上,又在直線L上

D.點P既不在直線L上,也不在圓M上答案:C34.已知函數(shù)f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關(guān)系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又

f(x)=(12)x在R上是減函數(shù),∴f(a+b2)≤f(ab)

≤f(2aba+b)即A≤B≤C故為:A≤B≤C.35.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標(biāo)為()

A.(3,-3)

B.(-,3)

C.(,-3)

D.(3,-)答案:D36.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測量(軸的直徑要求為(20±0.5)mm),如何采用簡單隨機抽樣方法抽取上述樣本?答案:本題是一個簡單抽樣,∵100件軸的直徑的全體是總體,將其中的100個個體編號00,01,02,…,99,利用隨機數(shù)表來抽取樣本的10個號碼,可以從表中的第20行第3列的數(shù)開始,往右讀數(shù),得到10個號碼如下:16,93,32,43,50,27,89,87,19,20將上述號碼的軸在同一條件下測量直徑.37.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點,已知燈口直徑是60

cm,燈深40

cm,則光源到反射鏡頂點的距離是

______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點的距離為458cm.38.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時,截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時,截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓39.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()

A.5-

B.5+

C

D.10答案:B40.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.41.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是

______,過這個圓外一點P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.42.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.43.已知一9行9列的矩陣中的元素是由互不相等的81個數(shù)組成,a11a12…a19a21a22…a29…………a91a92…a99若每行9個數(shù)與每列的9個數(shù)按表中順序分別構(gòu)成等差數(shù)列,且正中間一個數(shù)a55=7,則矩陣中所有元素之和為______.答案:∵每行9個數(shù)按從左至右的順序構(gòu)成等差數(shù)列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9個數(shù)按從上到下的順序也構(gòu)成等差數(shù)列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有數(shù)之和為81a55=567,故為567.44.正十邊形的一個內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個內(nèi)角的度數(shù)是180°(n-2)n當(dāng)n=10時.得到一個內(nèi)角為180°(10-2)10=144°45.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形

AB1C1

的重心,設(shè)三角形

AB1C1

的面積為

3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31146.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC47.選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π48.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).49.如圖,在長方體OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,點P在棱AA1上,且AP=2PA1,點S在棱BB1上,且SB1=2BS,點Q、R分別是O1B1、AE的中點,求證:PQ∥RS.答案:證明:如圖,建立空間直角坐標(biāo)系,則A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0),∵AP=2PA1,∴AP=2PA1=23AA1,即AP=23(0,0,2)=(0,0,43),∴P(3,0,43)同理可得,Q(0,2,2),R(3,2,0),S(0,4,23),∴PQ=(-3,2,23)=RS,∴PQ∥RS,∵R?PQ,∴PQ∥RS50.(幾何證明選講選做題)如圖,梯形,,是對角線和的交點,,則

答案:1:6解析:,

,,∵,,而∴。第2卷一.綜合題(共50題)1.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.2.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.3.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D4.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點,且不與頂點重合,已知為方程的兩根

(1)證明四點共圓

(2)若求四點所在圓的半徑答案:(1)見解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因為所以,∽,四點C、B、D、E共圓。(Ⅱ)當(dāng)時,方程的根因而,取CE中點G,BD中點F,分別過G,F做AC,AB的垂線,兩垂線交于點H,連接DH,因為四點C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點評:此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。5.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:26.設(shè)P、Q為兩個非空實數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時,b∈Q,P+Q={1,2,6}當(dāng)a=2時,b∈Q,P+Q={3,4,8}當(dāng)a=5時,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C7.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關(guān)于曲線C有下列命題:

①曲線C是以F1、F2為焦點的橢圓的一部分;

②曲線C關(guān)于x軸、y軸、坐標(biāo)原點O對稱;

③若P是上任意一點,則PF1+PF2≤10;

④若P是上任意一點,則PF1+PF2≥10;

⑤曲線C圍成圖形的面積為30.

其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤8.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(

A.散點圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A9.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.10.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.11.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C12.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D13.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.14.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.15.若以(y+2)2=4(x-1)上任一點P為圓心作與y軸相切的圓,那么這些圓必定過平面內(nèi)的點()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在這樣的點答案:C16.已知拋物線C:y2=4x的焦點為F,點A在拋物線C上運動.

(1)當(dāng)點A,P滿足AP=-2FA,求動點P的軌跡方程;

(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點A到M的距離記為d,求d的最小值.答案:(1)設(shè)動點P的坐標(biāo)為(x,y),點A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因為F的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因為AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.17.若不等式對一切x恒成立,求實數(shù)m的范圍.答案:見解析解析:∵x2-8x+20=(x-4)2+4>0,∴只須mx2-mx-1<0恒成立,即可:①

當(dāng)m=0時,-1<0,不等式成立;②

當(dāng)m≠0時,則須,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.18.用數(shù)學(xué)歸納法證明:

對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當(dāng)n=1時,左邊=12+1=2,右邊=1×2×33=2,所以當(dāng)n=1時,命題成立;

…(2分)(2)設(shè)n=k時,命題成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)則當(dāng)n=k+1時,左邊=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以當(dāng)n=k+1時,命題成立.綜合(1)(2)得:對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)19.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點F作FM∥AC、FN∥AB,分別交AB、AC于點M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A20.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.21.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()

A.(2,0)

B.

C.(2,π)

D.答案:D22.語句|x|≤3或|x|>5的否定是()

A.|x|≥3或|x|<5

B.|x|>3或|x|≤5

C.|x|≥3且|x|<5

D.|x|>3且|x|≤5答案:D23.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對應(yīng)關(guān)系,A中的2個函數(shù)的值域不同,B中的2個函數(shù)的定義域不同,C中的2個函數(shù)的對應(yīng)關(guān)系不同,只有D的2個函數(shù)的定義域、值域、對應(yīng)關(guān)系完全相同,故選D.24.兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機投入A、B、C三個空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.25.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.201626.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()

A.0

B.-8

C.2

D.10答案:B27.已知直線經(jīng)過點,傾斜角,設(shè)與圓相交與兩點,求點到兩點的距離之積。答案:2解析:把直線代入得,則點到兩點的距離之積為28.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C29.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.30.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()

A.A88

B.A55A44

C.A44A44

D.A85答案:B31.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>

當(dāng)n=1時,有nn+1______(n+1)n(填>、=或<);

當(dāng)n=2時,有nn+1______(n+1)n(填>、=或<);

當(dāng)n=3時,有nn+1______(n+1)n(填>、=或<);

當(dāng)n=4時,有nn+1______(n+1)n(填>、=或<);

猜想一個一般性的結(jié)論,并加以證明.答案:當(dāng)n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當(dāng)n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當(dāng)n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當(dāng)n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時也成立,∴當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.32.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D33.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR234.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.35.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.36.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點)的一個法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點)的一個法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.37.已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標(biāo)軸圍成的三角形的面積=______.答案:由題意知,點A在圓上,切線斜率為-1KOA=-121=-12,用點斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標(biāo)軸上的截距分別是5和52,所以,所求面積為12×52×5=254.38.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數(shù),故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.39.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.40.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()

A.3

B.2

C.

D.答案:A41.如圖為一個求50個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A42.已知求證:答案:證明見解析解析:證明:43.集合{1,2,3}的真子集的個數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個.故選C.44.利用斜二側(cè)畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是

______.答案:由斜二側(cè)直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應(yīng)該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②45.如圖,設(shè)P,Q為△ABC內(nèi)的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4546.已知雙曲線的兩漸近線方程為y=±32x,一個焦點坐標(biāo)為(0,-26),

(1)求此雙曲線方程;

(2)寫出雙曲線的準(zhǔn)線方程和準(zhǔn)線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標(biāo)準(zhǔn)方程為y218-x28=1.(2)由(1)得,雙曲線的準(zhǔn)線方程為y=±1826x;準(zhǔn)線間的距離為2a2c=2×1826=182613.47.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個點的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B48.已知△ABC的三個頂點A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為______.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).49.下列命題中,正確的是()

A.若a∥b,則a與b的方向相同或相反

B.若a∥b,b∥c,則a∥c

C.若兩個單位向量互相平行,則這兩個單位向量相等

D.若a=b,b=c,則a=c答案:D50.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.第3卷一.綜合題(共50題)1.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:232.直線2x-3y+10=0的法向量的坐標(biāo)可以是答案:C3.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c4.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為95.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()

A.9

B.18

C.27

D.36答案:B6.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:17.一元二次不等式ax2+bx+c≤0的解集是全體實數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D8.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.

(1)求證:BE⊥PD;

(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞嬎惴奖悴环猎O(shè)a=1.(1)證明:根據(jù)題意可得:以A為原點,AB,AD,AP所在直線為坐標(biāo)軸建立直角坐標(biāo)系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.9.某會議室第一排共有8個座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為()A.12B.16C.24D.32答案:將空位插到三個人中間,三個人有兩個中間位置和兩個兩邊位置就是將空位分為四部分,五個空位四分只有1,1,1,2空位五差別,只需要空位2分別占在四個位置就可以有四種方法,另外三個人排列A33=6根據(jù)分步計數(shù)可得共有4×6=24故選C.10.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()

A.大

B.相等

C.小

D.無法確定答案:A11.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,

=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.12.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負關(guān)于原點對稱,所以函數(shù)D(t)的圖象關(guān)于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.13.甲、乙兩人破譯一種密碼,它們能破譯的概率分別為和,求:

(1)恰有一人能破譯的概率;(2)至多有一人破譯的概率;

(3)若要破譯出的概率為不小于,至少需要多少甲這樣的人?答案:(1)(2)(3)至少需4個甲這樣的人才能滿足題意.解析:(1)設(shè)A為“甲能譯出”,B為“乙能譯出”,則A、B互相獨立,從而A與、與B、與均相互獨立.“恰有一人能譯出”為事件,又與互斥,則(2)“至多一人能譯出”的事件,且、、互斥,∴(3)設(shè)至少需要n個甲這樣的人,而n個甲這樣的人譯不出的概率為,∴n個甲這樣的人能譯出的概率為,由∴至少需4個甲這樣的人才能滿足題意.14.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應(yīng)的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應(yīng)的元素是4,集合A中還有兩個元素2和3,2可以和4對應(yīng),也可以和5對應(yīng),3可以和4對應(yīng),也可以和5對應(yīng),每個元素有兩種不同的對應(yīng),∴共有2×2=4種結(jié)果,故選B.15.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點P,原點為0,直線P0的傾斜角為π4,則P點的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負),因此點P的坐標(biāo)為(125,125)故為:(125,125)16.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B17.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的事件是從這個圓上隨機的取一個點,對應(yīng)的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點,根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1618.已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.

(1)求動點P的軌跡C的方程;

(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知動點P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動點P在以F(1,0)為焦點,以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.19.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.20.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2

012”時,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要條件.故選A.21.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C22.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C23.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計的一個程序空白框圖,將空白處補上.

①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計的一個程序,由于第一次執(zhí)行循環(huán)時的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計數(shù)變量i為2,步長為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.24.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點P一定在∠AOB平分線線上,故選A.25.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D26.在某電視歌曲大獎賽中,最有六位選手爭奪一個特別獎,觀眾A,B,C,D猜測如下:A說:獲獎的不是1號就是2號;A說:獲獎的不可能是3號;C說:4號、5號、6號都不可能獲獎;D說:獲獎的是4號、5號、6號中的一個.比賽結(jié)果表明,四個人中恰好有一個人猜對,則猜對者一定是觀眾

獲特別獎的是

號選手.答案:C,3.解析:推理如下:因為只有一人猜對,而C與D互相否定,故C、D中一人猜對。假設(shè)D對,則推出B也對,與題設(shè)矛盾,故D猜錯,所以猜對者一定是C;于是B一定猜錯,故獲獎?wù)呤?號選手(此時A錯).27.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.

(1)若A,B的中點為P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個三等分點,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).28.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.29.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()

(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;

(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應(yīng)越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C30.某校有學(xué)生1

200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.31.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個方向向量為()

A.(1,2,3)

B.(1,3,2)

C.(2,1,3)

D.(3,2,1)答案:A32.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.33.若數(shù)列{an}是等差數(shù)列,對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,對于dn>0,則dn=______時,數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論