優(yōu)勝教育2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁(yè)
優(yōu)勝教育2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁(yè)
優(yōu)勝教育2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁(yè)
優(yōu)勝教育2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁(yè)
優(yōu)勝教育2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.2.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.3.已知復(fù)數(shù),則的虛部是()A. B. C. D.14.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽(yáng)數(shù)中各取一數(shù),則其差的絕對(duì)值為5的概率為A. B. C. D.5.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.6.已知滿足,,,則在上的投影為()A. B. C. D.27.設(shè)集合,,若,則()A. B. C. D.8.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3310.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.411.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.012.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-3二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最小值是_________,最大值是_________.14.在平面直角坐標(biāo)系中,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為________.15.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.16.設(shè),則“”是“”的__________條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,的距離之積.18.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個(gè)特征向量.19.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值以及此時(shí)的直角坐標(biāo).21.(12分)已知數(shù)列滿足對(duì)任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點(diǎn),是曲線上的動(dòng)點(diǎn),求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.2.D【解析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長(zhǎng)公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.3.C【解析】

化簡(jiǎn)復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.4.A【解析】

陽(yáng)數(shù):,陰數(shù):,然后分析陰數(shù)和陽(yáng)數(shù)差的絕對(duì)值為5的情況數(shù),最后計(jì)算相應(yīng)概率.【詳解】因?yàn)殛?yáng)數(shù):,陰數(shù):,所以從陰數(shù)和陽(yáng)數(shù)中各取一數(shù)差的絕對(duì)值有:個(gè),滿足差的絕對(duì)值為5的有:共個(gè),則.故選:A.【點(diǎn)睛】本題考查實(shí)際背景下古典概型的計(jì)算,難度一般.古典概型的概率計(jì)算公式:.5.A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.6.A【解析】

根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.7.A【解析】

根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.8.A【解析】

計(jì)算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力和理解能力.9.C【解析】

依次遞推求出得解.【詳解】n=1時(shí),,n=2時(shí),,n=3時(shí),,n=4時(shí),,n=5時(shí),.故選:C【點(diǎn)睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。11.C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.12.D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-2二、填空題:本題共4小題,每小題5分,共20分。13.06【解析】

作不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求出結(jié)果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時(shí),當(dāng)直線過點(diǎn)時(shí),軸上截距最大,即z取最小值,.當(dāng)直線過點(diǎn)時(shí),軸上截距最小,即z取最大值,.故答案為:0;6.【點(diǎn)睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.14.【解析】

求出雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)坐標(biāo),并將該交點(diǎn)代入拋物線的方程,即可求出實(shí)數(shù)的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準(zhǔn)線方程為,漸近線方程為,所以,該雙曲線右準(zhǔn)線與漸近線的交點(diǎn)為.由題意得,解得.故答案為:.【點(diǎn)睛】本題考查利用拋物線上的點(diǎn)求參數(shù),涉及到雙曲線的準(zhǔn)線與漸近線方程的應(yīng)用,考查計(jì)算能力,屬于中等題.15.【解析】

由,求出長(zhǎng)度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點(diǎn)睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.16.充分必要【解析】

根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點(diǎn)睛】本題考查充分必要條件的判斷,可利用定義來判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來判斷,本題屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達(dá)定理得點(diǎn)到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡(jiǎn)得:,設(shè)兩點(diǎn)所對(duì)應(yīng)的參數(shù)分別為,則,.18.特征值為1,特征向量為.【解析】

設(shè)出矩陣M結(jié)合矩陣運(yùn)算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個(gè)特征向量.【詳解】設(shè)矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個(gè)特征向量為.【點(diǎn)睛】本題主要考查矩陣的運(yùn)算及特征量的求解,矩陣運(yùn)算的關(guān)鍵是明確其運(yùn)算規(guī)則,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).19.(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進(jìn)而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;

(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標(biāo)方程為曲線的直角坐標(biāo)方程為(2)在直角坐標(biāo)系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點(diǎn),在極坐標(biāo)下,設(shè),分別代入中,有和∴,則,即20.(1):,:;(2),此時(shí).【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.試題解析:(1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.考點(diǎn):坐標(biāo)系與參數(shù)方程.【方法點(diǎn)睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒?,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確?;セ昂蠓匠痰牡葍r(jià)性.注意方程中的參數(shù)的變化范圍.21.(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項(xiàng)建立方程,求出公差可得.(2)利用的通項(xiàng)公式,求出,用錯(cuò)位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項(xiàng),,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式及錯(cuò)位相減法求和.(1)解決等差數(shù)列通項(xiàng)的思路(1)在等差數(shù)列中,是最基本的兩個(gè)量,一般可設(shè)出和,利用等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式列方程(組)求解即可.(2)錯(cuò)位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用錯(cuò)位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式22.(1),;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論