2023年許昌電氣職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年許昌電氣職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年許昌電氣職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年許昌電氣職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年許昌電氣職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年許昌電氣職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱.∴x1+x2+…+x2011=0.故為:0.2.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為32,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.3.已知不等式a≤對(duì)x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對(duì)x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.4.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.5.下面是一個(gè)算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時(shí),y=10x=10,得x=1;當(dāng)x>5時(shí),y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.6.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.7.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D8.對(duì)于函數(shù)y=f(x),在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.9.已知圓C:x2+y2-4x-5=0.

(1)過點(diǎn)(5,1)作圓C的切線,求切線的方程;

(2)若圓C的弦AB的中點(diǎn)P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點(diǎn),其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因?yàn)閳AC的弦AB的中點(diǎn)P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直線方程為

x+y-4=0-----------------(14分)10.已知圓C的圓心為(1,1),半徑為1.直線l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點(diǎn)P的直角坐標(biāo)為(2,2),直線l與圓C交于A,B兩點(diǎn),求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線l的參數(shù)方程代入并化簡得t2+2(sinθ+cosθ)t+1=0,由直線參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當(dāng)θ=π4時(shí),|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.11.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()

A.[,)

B.[,)

C.[,)

D.[,)答案:A12.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.13.如圖,正方體ABCD-A1B1C1D1的棱長為3,點(diǎn)M在AB上,且AM=13AB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線A1D1的距離與P到點(diǎn)M的距離相等,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.14.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B15.已知點(diǎn)P是以F1、F2為左、右焦點(diǎn)的雙曲線(a>0,b>0)左支上一點(diǎn),且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D16.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個(gè)動(dòng)點(diǎn),求PM的最小值.答案:過C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時(shí)PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.17.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時(shí),左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時(shí),等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時(shí),12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時(shí)等式也成立.(10分)根據(jù)(1)和(2),可知等式對(duì)任何n∈N*都成立.(12分)18.點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是______.答案:設(shè)圓上任意一點(diǎn)為A(x1,y1),AP中點(diǎn)為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=119.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過定點(diǎn);

(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程;

(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時(shí)等號(hào)成立,此時(shí)面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時(shí),直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).20.不等式的解集是(

A.

B.

C.

D.答案:D21.已知正四棱柱的對(duì)角線的長為6,且對(duì)角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:222.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為______.答案:依題設(shè)P在拋物線準(zhǔn)線的投影為P',拋物線的焦點(diǎn)為F,則F(12,0),依拋物線的定義知P到該拋物線準(zhǔn)線的距離為|PP'|=|PF|,則點(diǎn)P到點(diǎn)A(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.23.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B24.方程.12

41x

x21-3

9.=0的解集為______.答案:.12

41x

x21-3

9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.25.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A26.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個(gè)單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個(gè)單位的向量.27.在畫兩個(gè)變量的散點(diǎn)圖時(shí),下面哪個(gè)敘述是正確的()

A.預(yù)報(bào)變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報(bào)變量y軸上

C.可以選擇兩個(gè)變量中任意一個(gè)變量x軸上

D.可以選擇兩個(gè)變量中任意一個(gè)變量y軸上答案:B28.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是______.答案:∵AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.29.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點(diǎn)的向量

B.等長的向量

C.共面向量

D.不共面向量答案:C30.若f(x)是定義在R上的函數(shù),滿足對(duì)任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對(duì)任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.31.設(shè)、、是三角形的邊長,求證:

≥答案:證明見解析解析:證明:由不等式的對(duì)稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥032.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C33.如圖,四邊形OABC是邊長為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B34.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個(gè)順序結(jié)構(gòu).35.隨機(jī)變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()

A.

B.

C.

D.答案:B36.已知實(shí)數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點(diǎn)P到原點(diǎn)的距離的最小值.則根據(jù)點(diǎn)到直線的距離公式得點(diǎn)P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.37.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()

A.簡單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B38.設(shè)是的相反向量,則下列說法一定錯(cuò)誤的是()

A.∥

B.與的長度相等

C.是的相反向量

D.與一定不相等答案:D39.下列命題:

①用相關(guān)系數(shù)r來刻畫回歸的效果時(shí),r的值越大,說明模型擬合的效果越好;

②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測值來說,K2越小,“X與Y有關(guān)系”可信程度越大;

③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;

其中正確命題的序號(hào)是

______.(寫出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③40.已知,向量與向量的夾角是,則x的值為()

A.±3

B.±

C.±9

D.3答案:D41.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()

A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角

B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角

C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角

D.以上都不對(duì)答案:B42.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|

|n|=231×22+1+(23)2=27.故為27.43.已知平面α內(nèi)有一個(gè)點(diǎn)A(2,-1,2),α的一個(gè)法向量為=(3,1,2),則下列點(diǎn)P中,在平面α內(nèi)的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B44.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.45.如圖,在△OAB中,P為線段AB上的一點(diǎn),,且,則()

A.

B.

C.

D.

答案:A46.拋擲兩個(gè)骰子,若至少有一個(gè)1點(diǎn)或一個(gè)6點(diǎn)出現(xiàn),就說這次試驗(yàn)失?。敲矗?次試驗(yàn)中成功2次的概率為()

A.

B.

C.

D.答案:D47.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點(diǎn)A作AM⊥BD與點(diǎn)M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設(shè)AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.48.已知圓的極坐標(biāo)方程為ρ=4cosθ,圓心為C,點(diǎn)P的極坐標(biāo)為(4,π3),則|CP|=______.答案:圓的極坐標(biāo)方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點(diǎn)P的極坐標(biāo)為(4,π3),所以P的直角坐標(biāo)(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.49.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時(shí),試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時(shí),由已知得原式成立;(2)假設(shè)當(dāng)n=k時(shí),原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當(dāng)n=k+1時(shí),12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時(shí),原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.50.已知G是△ABC的重心,O是平面ABC外的一點(diǎn),若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.第2卷一.綜合題(共50題)1.經(jīng)過兩點(diǎn)A(-3,5),B(1,1

)的直線傾斜角為______.答案:因?yàn)閮牲c(diǎn)A(-3,5),B(1,1

)的直線的斜率為k=1-51-(-3)=-1所以直線的傾斜角為:135°.故為:135°.2.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn).用AB、AD、AA1表示向量MN,則MN=______.答案:∵M(jìn)N=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.3.曲線xy=1的參數(shù)方程不可能是()

A.

B.

C.

D.答案:B4.若2x1+3y1=4,2x2+3y2=4,則過點(diǎn)A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點(diǎn)A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因?yàn)檫^兩點(diǎn)確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=45.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點(diǎn)都在直線2x+3y+1=0上,由于兩點(diǎn)確定一條直線,因此經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.6.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.7.若點(diǎn)M到定點(diǎn)F和到定直線l的距離相等,則下列說法正確的是______.

①點(diǎn)M的軌跡是拋物線;

②點(diǎn)M的軌跡是一條與x軸垂直的直線;

③點(diǎn)M的軌跡是拋物線或一條直線.答案:當(dāng)點(diǎn)F不在直線l上時(shí),點(diǎn)M的軌跡是以F為焦點(diǎn)、l為準(zhǔn)線的拋物線;而當(dāng)點(diǎn)F在直線l上時(shí),點(diǎn)M的軌跡是一條過點(diǎn)F,且與l垂直的直線.故為:③8.若a>0,b<0,直線y=ax+b的圖象可能是()

A.

B.

C.

D.

答案:C9.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時(shí)無法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個(gè),否則,若M2是e,則第二行另一個(gè)數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當(dāng)M2是b時(shí),此時(shí),a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當(dāng)M2是c時(shí),此時(shí)a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當(dāng)M2是d時(shí),此時(shí),a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個(gè)數(shù)為:24+72+144=240種,故為:240.10.如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線PC交AB的延長線于點(diǎn)P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B11.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.12.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是

______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-113.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長為()

A.4

B.2

C.4

D.3答案:A14.(選做題)

曲線(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(

).答案:0<a≤115.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個(gè).

A.2

B.3

C.4

D.5答案:D16.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域?yàn)椋?,+∞).故為(0,+∞).17.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C18.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個(gè)交點(diǎn),則該函數(shù)的所有零點(diǎn)之和為()A.4B.2C.1D.0答案:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對(duì)稱.又其圖象與x軸有四個(gè)交點(diǎn),所以四個(gè)交點(diǎn)關(guān)于y軸對(duì)稱,不妨設(shè)四個(gè)交點(diǎn)的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對(duì)稱性可知x1+x2+x3+x4=0.故選D.19.若實(shí)數(shù)X、少滿足,則的范圍是()

A.[0,4]

B.(0,4)

C.(-∝,0]U[4,+∝)

D.(-∝,0)U(4,+∝))答案:D20.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯(cuò)誤;C、f(x)=x3,其定義域?yàn)镽,故C錯(cuò)誤;D、f(x)=ex,其定義域?yàn)镽,故D錯(cuò)誤;故選A.21.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測得10對(duì)母女的身高如下表所示:

母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計(jì)算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計(jì)算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時(shí),可以估計(jì)女兒的身高大致為______.答案:查對(duì)臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時(shí),y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.22.直線l過點(diǎn)(-3,1),且它的一個(gè)方向向量n=(2,-3),則直線l的方程為______.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得n=(2,-3)與a=(1,k)互相平行∴12=k-3?k=-32所以直線l的點(diǎn)斜式方程為:y-1=-32(x+3)化成一般式:3x+2y+7=0故為:3x+2y+7=023.已知向量,,,則(

)A.B.C.5D.25答案:C解析:將平方即可求得C.24.若關(guān)于x的不等式(1+k2)x≤k4+4的解集是M,則對(duì)任意實(shí)常數(shù)k,總有(

A.

B.

C.

D.,0∈M答案:A25.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.26.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn).

(1)求異面直線BD1與CE所成角的余弦值;

(2)求二面角A1-EC-A的余弦值.答案:以D為原點(diǎn),DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)27.圓x2+y2-4x=0,在點(diǎn)P(1,)處的切線方程為()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D28.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.29.已知點(diǎn)A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動(dòng)點(diǎn),直線BP與線段AP的垂直平分線交于點(diǎn)Q.

(1)證明點(diǎn)Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點(diǎn)Q的坐標(biāo).答案:(1)∵點(diǎn)Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點(diǎn)Q的軌跡是以A、B為焦點(diǎn)的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個(gè)頂點(diǎn)作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點(diǎn)Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)30.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.31.在平面直角坐標(biāo)系xOy中,已知拋物線關(guān)于x軸對(duì)稱,頂點(diǎn)在原點(diǎn)O,且過點(diǎn)P(2,4),則該拋物線的方程是______.答案:設(shè)所求拋物線方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x32.以拋物線的焦點(diǎn)弦為直徑的圓與其準(zhǔn)線的位置關(guān)系是(

A.相切

B.相交

C.相離

D.以上均有可能答案:A33.若向量{}是空間的一個(gè)基底,則一定可以與向量構(gòu)成空間的另一個(gè)基底的向量是()

A.

B.

C.

D.答案:C34.如圖的矩形,長為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:23535.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因?yàn)榧螦={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.36.(選做題)某制藥企業(yè)為了對(duì)某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實(shí)驗(yàn)范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時(shí),能保證找到最佳培養(yǎng)溫度需要最少實(shí)驗(yàn)次數(shù)為(

)。答案:737.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對(duì)稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341338.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.39.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對(duì)值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價(jià)于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.40.若圓C過點(diǎn)M(0,1)且與直線l:y=-1相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點(diǎn),點(diǎn)P(0,t)(t>0),且滿足AP=λPB(λ>1).

(I)求曲線E的方程;

(II)若t=6,直線AB的斜率為12,過A、B兩點(diǎn)的圓N與拋物線在點(diǎn)A處共同的切線,求圓N的方程;

(III)分別過A、B作曲線E的切線,兩條切線交于點(diǎn)Q,若點(diǎn)Q恰好在直線l上,求證:t與QA?QB均為定值.答案:【解】(Ⅰ)依題意,點(diǎn)C到定點(diǎn)M的距離等于到定直線l的距離,所以點(diǎn)C的軌跡為拋物線,曲線E的方程為x2=4y.(Ⅱ)直線AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以拋物線x2=4y在點(diǎn)A處切線的斜率為y'|x=6=3.直線NA的方程為y-9=-13(x-6),即y=-13x+11.①線段AB的中點(diǎn)坐標(biāo)為(1,132),線段AB中垂線方程為y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圓C的方程為(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)設(shè)A(x1,x124),B(x2,x224),Q(a,-1).過點(diǎn)A的切線方程為y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直線AB的方程為y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA?QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.41.如圖,某公司制造一種海上用的“浮球”,它是由兩個(gè)半球和一個(gè)圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?

(2)假設(shè)該“浮球”的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元.求該“浮球”的建造費(fèi)用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個(gè)半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個(gè)半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元,∴該“浮球”的建造費(fèi)用為2π×20+π×30=70π≈220元.42.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()

A.

B.

C.

D.

答案:A43.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±244.已知拋物線x2=4y上的點(diǎn)p到焦點(diǎn)的距離是10,則p點(diǎn)坐標(biāo)是

______.答案:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1)根據(jù)拋物線定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點(diǎn)坐標(biāo)是(±6,9)故為:(±6,9)45.春天到了,曲曲折折的荷塘上面,彌望的是田田的葉子,已知每一天荷葉覆蓋水面的面積是前一天的2倍,若荷葉20天可以完全長滿池塘水面,當(dāng)荷葉剛好覆蓋水面面積的一半時(shí),荷葉已生長了()A.10天B.15天C.19天D.20天答案:設(shè)荷葉覆蓋水面的初始面積為a,則x天后荷葉覆蓋水面的面積y=a?2x(x∈N+),根據(jù)題意,令2(a?2x)=a?220,解得x=19,故選C.46.設(shè)橢圓=1和x軸正方向的交點(diǎn)為A,和y軸的正方向的交點(diǎn)為B,P為第一象限內(nèi)橢圓上的點(diǎn),使四邊形OAPB面積最大(O為原點(diǎn)),那么四邊形OAPB面積最大值為()

A.a(chǎn)b

B.ab

C.a(chǎn)b

D.2ab答案:B47.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.

(1)求證:圓心O在直線AD上.

(2)求證:點(diǎn)C是線段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線段GD的中點(diǎn).(10分)48.算法的有窮性是指()A.算法必須包含輸出B.算法中每個(gè)操作步驟都是可執(zhí)行的C.算法的步驟必須有限D(zhuǎn).以上說法均不正確答案:一個(gè)算法必須在有限步內(nèi)結(jié)束,簡單的說就是沒有死循環(huán)即算法的步驟必須有限故選C.49.如圖,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),∠ACB的平分線分別交AE、AB于點(diǎn)F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3350.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點(diǎn)A(2,3),則過兩點(diǎn)P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點(diǎn),∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點(diǎn)P1(a1,b1),P2(a2,b2)的坐標(biāo)都適合方程2x+3y+1=0,∴兩點(diǎn)(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(diǎn)(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.第3卷一.綜合題(共50題)1.若與垂直,則k的值是()

A.2

B.1

C.0

D.答案:D2.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時(shí)x2-2x=-1∴f(3)=-1故為:-13.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C4.將兩粒均勻的骰子各拋擲一次,觀察向上的點(diǎn)數(shù),計(jì)算:

(1)共有多少種不同的結(jié)果?并試著列舉出來.

(2)兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的概率;

(3)兩粒骰子點(diǎn)數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計(jì)數(shù)原理,所有可能結(jié)果共有6×6=36種.

…(4分)(2)兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個(gè)結(jié)果,因此,兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的概率是1236=13.

…(8分)(3)兩粒骰子點(diǎn)數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點(diǎn)數(shù)之和為4或5的概率為736.

…(12分)5.給出下列四個(gè)命題:

①若兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;

②在平行四邊形ABCD中,一定有;

③若則

④若則

其中正確的命題個(gè)數(shù)是()

A.1

B.2

C.3

D.4答案:C6.已知兩點(diǎn)分別為A(4,3)和B(7,-1),則這兩點(diǎn)之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.7.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1,即a=b=c=13時(shí),(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=328.當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為______.答案:根據(jù)圓的參數(shù)方程的意義,當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).9.從點(diǎn)A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點(diǎn)坐標(biāo)為()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B10.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過兩點(diǎn)O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點(diǎn)到兩圓的切線長相等答案:D11.復(fù)數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.12.已知拋物線y2=4x上兩定點(diǎn)A、B分別在對(duì)稱軸兩側(cè),F(xiàn)為焦點(diǎn),且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點(diǎn)P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點(diǎn)A在第一象限,B點(diǎn)在第四象限.如圖.拋物線的焦點(diǎn)F(1,0),點(diǎn)A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點(diǎn)P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時(shí),d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時(shí)P點(diǎn)坐標(biāo)為(14,-1).…(12分).13.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(

A.

B.

C.

D.答案:C14.某水產(chǎn)試驗(yàn)廠實(shí)行某種魚的人工孵化,10000個(gè)卵能孵化出7645尾魚苗.根據(jù)概率的統(tǒng)計(jì)定義解答下列問題:

(1)求這種魚卵的孵化概率(孵化率);

(2)30000個(gè)魚卵大約能孵化多少尾魚苗?

(3)要孵化5000尾魚苗,大概得準(zhǔn)備多少魚卵?(精確到百位)答案:(1)這種魚卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個(gè)魚卵大約能孵化:30000×0.7645=22935尾魚苗(3)要孵化5000尾魚苗,需準(zhǔn)備50000.7645=6500個(gè)魚卵.15.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.16.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時(shí),取得最小值83B.當(dāng)x=2時(shí),取得最大值83C.當(dāng)x=2時(shí),取得最小值22D.當(dāng)x=2時(shí),取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時(shí),取得最大值22故選D.17.某學(xué)校為了調(diào)查高三年級(jí)的200名文科學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)該年級(jí)的文科學(xué)生進(jìn)行編號(hào),從001到200,抽取學(xué)號(hào)最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡單隨機(jī)抽樣,第二種由教務(wù)處對(duì)該年級(jí)的文科學(xué)生進(jìn)行編號(hào),從001到200,抽取學(xué)號(hào)最后一位為2的同學(xué)進(jìn)行調(diào)查,對(duì)于個(gè)體比較多的總體,采用系統(tǒng)抽樣,故選D.18.

如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A19.已知四邊形ABCD,

點(diǎn)E、

F、

G、

H分別是AB、BC、CD、DA的中點(diǎn),

求證:

EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),∴HG=12AC,EF=12AC,∴EF=HG.20.若不等式logax>sin2x(a>0,a≠1)對(duì)任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時(shí),函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(diǎn)(π4,1)時(shí),a=π4,然后它只能向右旋轉(zhuǎn),此時(shí)a在增大,但是不能大于1故選B.21.若命題P(n)對(duì)n=k成立,則它對(duì)n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()

A.P(n)對(duì)所有自然數(shù)n都成立

B.P(n)對(duì)所有正偶數(shù)n成立

C.P(n)對(duì)所有正奇數(shù)n都成立

D.P(n)對(duì)所有大于1的自然數(shù)n成立答案:B22.拋物線y=x2的焦點(diǎn)坐標(biāo)是()

A.(,0)

B.(0,)

C.(0,1)

D.(1,0)答案:C23.設(shè)m∈R,向量=(1,m).若||=2,則m等于()

A.1

B.

C.±1

D.±答案:D24.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D25.如右圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個(gè)分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41

C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41

C12

C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.26.有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.

(1)選修4-2:矩陣與變換

已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時(shí)針旋轉(zhuǎn)45°”.

(Ⅰ)寫出矩陣M及其逆矩陣M-1;

(Ⅱ)請(qǐng)寫出△ABC在矩陣M-1對(duì)應(yīng)的變換作用下所得△A1B1C1的面積.

(2)選修4-4:坐標(biāo)系與參數(shù)方程

過P(2,0)作傾斜角為α的直線l與曲線E:x=cosθy=22sinθ(θ為參數(shù))交于A,B兩點(diǎn).

(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;

(Ⅱ)求sinα的取值范圍.

(3)(選修4-5

不等式證明選講)

已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,

(Ⅰ)求證:a+b+c≤3;

(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)

cos(-45°)=2222-2222∵矩陣M表示變換“順時(shí)針旋轉(zhuǎn)45°”∴矩陣M-1表示變換“逆時(shí)針旋轉(zhuǎn)45°”∴M-1=cos45°-sin45°sin45°

cos45°=22-2222

22(Ⅱ)三角形ABC的面積S△ABC=12×(3-1)×2=2,由于△ABC在旋轉(zhuǎn)變換下所得△A1B1C1與△ABC全等,故三角形的面積不變,即S△A1B1C1=2.(2)(Ⅰ)曲線E的普通方程為x2+2y2=1L的參數(shù)方程為x=2+tcosαy=tsinα(t為參數(shù))

(Ⅱ)將L的參數(shù)方程代入由線E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)證明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3當(dāng)且僅當(dāng)a=b=c=1,取等號(hào).(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,則2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,當(dāng)且僅當(dāng)a=b=1時(shí),c有最大值1.27.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:228.

在△ABC中,點(diǎn)D在線段BC的延長線上,且BC=3CD,點(diǎn)O在線段CD上(與點(diǎn)C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()

A.

B.

C.

D.答案:D29.已知|a|=1,|b|=2,a與b的夾角為60°,則a+b在a方向上的投影為______.答案:∵|a|=1,|b|=2,a與b的夾角為60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.設(shè)a+b與a的夾角為θ,則∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影為|a+b|cosθ=7×277=2故為:230.過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長.答案:直線的參數(shù)方程為

x

=

-3

+

32sy

=

12s

(s

為參數(shù)),曲線x=t+1ty=t-1t

可以化為

x2-y2=4.將直線的參數(shù)方程代入上式,得

s2-63s+

10

=

0.設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2,∴s1+

s2=

6

3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.31.化簡的結(jié)果是()

A.a(chǎn)B.C.a(chǎn)2D.答案:B解析:分析:指數(shù)函數(shù)的性質(zhì)32.下列說法正確的是()

A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件

B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件

C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大

D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B33.x2+(m-3)x+m=0

一個(gè)根大于1,一個(gè)根小于1,m的范圍是______.答案:設(shè)f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個(gè)根大于1,一個(gè)根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.34.若隨機(jī)變量X的概率分布如下表,則表中a的值為()

X

1

2

3

4

P

0.2

0.3

0.3

a

A.1

B.0.8

C.0.3

D.0.2答案:D35.對(duì)于函數(shù)y=f(x),在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.36.某市某年一個(gè)月中30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)37.10件產(chǎn)品

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論