2023年西寧城市職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年西寧城市職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年西寧城市職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年西寧城市職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年西寧城市職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年西寧城市職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知O是空間任意一點,A、B、C、D四點滿足任三點均不共線,但四點共面,且=2x+3y+4z,則2x+3y+4z=(

)答案:﹣12.已知兩定點F1(5,0),F(xiàn)2(-5,0),曲線C上的點P到F1、F2的距離之差的絕對值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點,以實軸長為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B3.函數(shù)f(x)=2x2+1,&x∈[0,2],則函數(shù)f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設y=2t,t=x2+1∈[1,5],∵y=2t是增函數(shù),∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數(shù)f(x)的值域為[2,32].故為:C.4.設P是邊長為23的正△ABC內(nèi)的一點,x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點∴點P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當且僅當x=y=z=1時,x+y+z的最大值為3故為:35.若函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒有單調(diào)遞增區(qū)間C.f(x)沒有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),畫出一個滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.6.一元二次不等式ax2+bx+c≤0的解集是全體實數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D7.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()

A.2

B.

C.4

D.

答案:C8.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(

)

A.0個

B.1個

C.2個

D.無窮多個答案:C9.某水產(chǎn)試驗廠實行某種魚的人工孵化,10000個卵能孵化出7645尾魚苗.根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)求這種魚卵的孵化概率(孵化率);

(2)30000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5000尾魚苗,大概得準備多少魚卵?(精確到百位)答案:(1)這種魚卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個魚卵大約能孵化:30000×0.7645=22935尾魚苗(3)要孵化5000尾魚苗,需準備50000.7645=6500個魚卵.10.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.11.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當a=0時,兩條直線垂直;當a=-1時,兩條直線重合故為:112.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)13.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:

廣告費用x(萬元)

2

3

4

5

銷售額y(萬元)

27

39

48

54

根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為()

A.65.5萬元

B.66.2萬元

C.67.7萬元

D.72.0萬元答案:A14.設A=xn+x-n,B=xn-1+x1-n,當x∈R+,n∈N+時,求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當x≥1時,x-1≥0,x2n-1-1≥0;當x<1時,x-1<0,x2n-1<0,即x-1與x2n-1-1同號.∴A-B≥0.∴A≥B.15.(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.16.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A17.已知A(-1,2),B(2,-2),則直線AB的斜率是()

A.

B.

C.

D.答案:A18.圓的極坐標方程是ρ=2cosθ+2sinθ,則其圓心的極坐標是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A19.寫出按從小到大的順序重新排列x,y,z三個數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個數(shù)值;(2).從三個數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.20.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關系是______.答案:∵圓x2+y2-6x+4y+12=0化成標準形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關系是內(nèi)切故為:內(nèi)切21.直線和圓交于兩點,則的中點

坐標為(

)A.B.C.D.答案:D解析:,得,中點為22.A、B是直線l上的兩點,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4323.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D24.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191025.如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()

A.y2=x

B.y2=9x

C.y2=x

D.y2=3x

答案:D26.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c27.設O是坐標原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p28.直線kx-y+1=3k,當k變動時,所有直線都通過定點

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C29.已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說法中:

①對于任意的θ,圓C1與圓C2始終相切;

②對于任意的θ,圓C1與圓C2始終有四條公切線;

③當θ=π6時,圓C1被直線l:3x-y-1=0截得的弦長為3;

④P,Q分別為圓C1與圓C2上的動點,則|PQ|的最大值為4.

其中正確命題的序號為

______.答案:①由圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,得到圓C1的圓心(2cosθ,2sinθ),半徑R=1;圓C2的圓心(0,0),半徑r=1,則兩圓心之間的距離d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以兩圓的位置關系是外切,此正確;②由①得兩圓外切,所以公切線的條數(shù)是3條,所以此錯誤;③把θ=π6代入圓C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圓心(3,1)到直線l的距離d=|3-2|3+1=12,則圓被直線l截得的弦長=21-(12)2=3,所以此正確;④由兩圓外切得到|PQ|=2+2=4,此正確.綜上,正確的序號為:①③④.故為:①③④30.直線的參數(shù)方程為,l上的點P1對應的參數(shù)是t1,則點P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C31.若a=()x,b=x3,c=logx,則當x>1時,a,b,c的大小關系式()

A.a(chǎn)<b<c

B.c<b<a

C.c<a<b

D.a(chǎn)<c<b答案:C32.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.33.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當n=1時,S=2,n=2;當n=2時,S=6,n=3;當n=3時,S=14,n=4;當n=4時,S=30,n=5;故最后輸出的n值為5故為:534.方程x2+y2=1(xy<0)的曲線形狀是()

A.

B.

C.

D.

答案:C35.用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應假設______.答案:根據(jù)用反證法證明數(shù)學命題的方法和步驟,先把要證的結(jié)論進行否定,得到要證的結(jié)論的反面,而命題:“三角形三個內(nèi)角至少有一個不大于60°”的否定為“三個內(nèi)角都大于60°”,故為三個內(nèi)角都大于60°.36.已知矩陣A=b-2-7a的逆矩陣是B=a273,則a+b=______.答案:根據(jù)矩陣A=b-2-7a的逆矩陣是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故為:8.37.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.38.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯誤,應改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應改為輸出n;39.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當且僅當a1=a2=…=an或b1=b2=…=bn時等號成立.答案:證明不妨設a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號當且僅當a1=a2=…=an或b1=b2=…=bn時成立.40.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).41.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).42.已知G是△ABC的重心,O是平面ABC外的一點,若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.43.下列隨機變量ξ服從二項分布的是()

①隨機變量ξ表示重復拋擲一枚骰子n次中出現(xiàn)點數(shù)是3的倍數(shù)的次數(shù);

②某射手擊中目標的概率為0.9,從開始射擊到擊中目標所需的射擊次數(shù)ξ;

③有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N);

④有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N).

A.②③

B.①④

C.③④

D.①③答案:D44.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設______.答案:根據(jù)用反證法證明數(shù)學命題的方法和步驟,應先假設命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.45.若矩陣M=1101,則直線x+y+2=0在M對應的變換作用下所得到的直線方程為______.答案:設直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,[1

1][x]=[x0][0

1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.46.在用樣本頻率估計總體分布的過程中,下列說法正確的是()A.總體容量越大,估計越精確B.總體容量越小,估計越精確C.樣本容量越大,估計越精確D.樣本容量越小,估計越精確答案:∵用樣本頻率估計總體分布的過程中,估計的是否準確與總體的數(shù)量無關,只與樣本容量在總體中所占的比例有關,∴樣本容量越大,估計的月準確,故選C.47.若根據(jù)10名兒童的年齡

x(歲)和體重

y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預報體重的回歸方程是

y=2x+7,已知這10名兒童的年齡分別是

2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C48.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C49.復數(shù)z=(2+i)(1+i)在復平面上對應的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因為z=(2+i)(1+i)=2+3i+i2=1+3i,所以復數(shù)對應點的坐標為(1,3),所以位于第一象限.故選A.50.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進行施化肥量x對產(chǎn)量y影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

施化肥量x15202530354045棉花產(chǎn)量y330345365405445450455(1)畫出散點圖;

(2)判斷是否具有相關關系.答案:(1)根據(jù)已知表格中的數(shù)據(jù)可得施化肥量x和產(chǎn)量y的散點圖如下所示:(2)根據(jù)(1)中散點圖可知,各組數(shù)據(jù)對應點大致分布在一個條形區(qū)域內(nèi)(一條直線附近)故施化肥量x和產(chǎn)量y具有線性相關關系.第2卷一.綜合題(共50題)1.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B2.為了考察兩個變量x和y之間的線性相關性,甲、乙兩位同學各自獨立地做10次和15次試驗,并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法正確的是()

A.l1和l2必定平行

B.l1與l2必定重合

C.l1和l2有交點(s,t)

D.l1與l2相交,但交點不一定是(s,t)答案:C3.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若K2的觀測值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病

B.從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推判出現(xiàn)錯誤

D.以上三種說法都不正確答案:C4.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學,老師打算組織同學們集體去游泳,除需購買若干張游泳卡外,每次游泳還需包一輛汽車,無論乘坐多少名同學,每次的包車費均為40元.

若使每個同學游8次,每人最少應交多少元錢?答案:設買x張游泳卡,總開支為y元,則每批去x名同學,共需去48×8x=384x批,總開支又分為:①買卡所需費用240x;②包車所需費用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當且僅當x=64x時,即x=8時取等號.∴當x=8時,總開支y的最大值為3840元,此時每人最少應交384048=80(元).答:若使每個同學游8次,每人最少應交80元錢.5.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(

A.2

B.1

C.0

D.-1答案:D6.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.7.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當?shù)淖鴺讼担笃矫鍭MN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.8.某處有供水龍頭5個,調(diào)查表明每個水龍頭被打開的可能性為,隨機變量ξ表示同時被打開的水龍頭的個數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨立重復試驗中,恰好發(fā)生k次的概率.對5個水龍頭的處理可視為做5次試驗,每次試驗有2種可能結(jié)果:打開或未打開,相應的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.9.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過點(3,8),求f(4)=______.答案:設指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.10.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.11.已知點A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點B的坐標為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)12.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.13.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A14.為提高廣東中小學生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級各類中小學每年都要在體育教學中實施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標準,體能素質(zhì)測試成績在[85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.

現(xiàn)從佛山市某校高一年級的900名學生中隨機抽取30名學生的測試成績?nèi)缦拢?/p>

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計該校高一年級體能素質(zhì)為優(yōu)秀的學生人數(shù);

(2)在上述抽取的30名學生中任取2名,設ξ為體能素質(zhì)為優(yōu)秀的學生人數(shù),求ξ的分布列和數(shù)學期望(結(jié)果用分數(shù)表示);

(3)請你依據(jù)所給數(shù)據(jù)和上述廣東省標準,對該校高一學生的體能素質(zhì)給出一個簡短評價.答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:

分組

頻數(shù)

頻率[55,60)

1

130[60,65)

1

130[65,70)

2

230[70,75)

2

230[75,80)

4

430[80,85)

10

1030[85,90)

6

630[90,95)

3

330[95,100)

1

130根據(jù)抽樣,估計該校高一學生中體能素質(zhì)為優(yōu)秀的有1030×900=300人

…(5分)(2)ξ的可能取值為0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987

…(8分)∴ξ分布列為:ξ012P38874087987…(9分)所以,數(shù)學期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根據(jù)抽樣,估計該校高一學生中體能素質(zhì)為優(yōu)秀有1030×900=300人,占總?cè)藬?shù)的13,體能素質(zhì)為良好的有1430×900=420人,占總?cè)藬?shù)的715,體能素質(zhì)為優(yōu)秀或良好的共有2430×900=720人,占總?cè)藬?shù)的45,但體能素質(zhì)為不合格或僅為合格的共有630×900=180人,占總?cè)藬?shù)的15,說明該校高一學生體能素質(zhì)良好,但仍有待進一步提高,還需積極參加體育鍛煉.15.將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=()

816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.16.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.17.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標對應成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標對應成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標對應不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標對應成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.18.一條直線上順次有A、B、C三點,且|AB|=2,|BC|=3,則C分有向線段AB的比為()

A.-

B.-

C.-

D.-答案:A19.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)20.求證:不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點,并求出這個定點的坐標.答案:證明:直線(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根據(jù)λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點(2,-3).21.若方程mx2+(m+1)x+m=0有兩個不相等的實根,則實數(shù)m的取值范圍是()

A.m>0

B.-<m<1

C.-<m<0或0<m<1

D.不確定答案:C22.設F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4323.設集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.24.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D25.在下列4個命題中,是真命題的序號為()

①3≥3;

②100或50是10的倍數(shù);

③有兩個角是銳角的三角形是銳角三角形;

④等腰三角形至少有兩個內(nèi)角相等.

A.①

B.①②

C.①②③

D.①②④答案:D26.圓x2+y2=1上的點到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:327.設P是邊長為23的正△ABC內(nèi)的一點,x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點∴點P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當且僅當x=y=z=1時,x+y+z的最大值為3故為:328.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關數(shù)據(jù)組成傳輸信息.設定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項正確;B選項原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項正確;C選項原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項錯誤;D選項原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項正確;故選C.29.若a,b∈R,求證:≤+.答案:證明略解析:證明

當|a+b|=0時,不等式顯然成立.當|a+b|≠0時,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.30.在對兩個變量x,y進行線性回歸分析時,有下列步驟:

①對所求出的回歸直線方程作出解釋;

②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;

③求線性回歸方程;

④求相關系數(shù);

⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.

如果根據(jù)可形性要求能夠作出變量x,y具有線性相關結(jié)論,則在下列操作順序中正確的是()

A.①②⑤③④

B.③②④⑤①

C.②④③①⑤

D.②⑤④③①答案:D31.高二年級某班有男生36人,女生28人,從中任選一位同學為數(shù)學科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學為數(shù)學科代表,則不同選法的種數(shù)64,故選C.32.如圖,在△ABC中,設AB=a,AC=b,AP的中點為Q,BQ的中點為R,CR的中點恰為P.

(Ⅰ)若AP=λa+μb,求λ和μ的值;

(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比S平行四邊形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,設AB=a,AC=b,AP的中點為Q,BQ的中點為R,CR的中點恰為P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,∵得AP=27AB+47AC,∴S平行四邊形ANPMS平行四邊形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;33.設a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.34.下列4個命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當x∈(0,)時,()x<1,而>1.p4正確35.某種細菌在培養(yǎng)過程中,每20分鐘分裂一次(一個分裂為兩個).經(jīng)過3個小時,這種細菌由1個可繁殖成()

A.511個

B.512個

C.1023個

D.1024個答案:B36.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()

A.銳角

B.直角

C.鈍角

D.以上皆有可能答案:B37.某學校高一、高二、高三共有學生3500人,其中高三學生數(shù)是高一學生數(shù)的兩倍,高二學生數(shù)比高一學生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應抽取高一學生數(shù)為()

A.8

B.11

C.16

D.10答案:A38.如圖程序運行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當n=12時,不滿足“s<10”,則輸出n的值2故為:239.已知向量,,則“,λ∈R”成立的必要不充分條件是()

A.

B與方向相同

C.

D.答案:D40.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.41.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C42.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分數(shù)法確定最佳溫度,設第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(

)。答案:34℃或45℃43.(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.44.若A、B兩點的極坐標為A(4

,

π3),B(6,0),則AB中點的極坐標是

______(極角用反三角函數(shù)值表示)答案:A的直角坐標為:(2,23),所以AB的中點坐標為:(4,3)所以極徑為:19;極角為:α,tanα=34所以α=arctan34;AB中點的極坐標是:(19,

arctan34)故為:(19,

arctan34)45.設函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對任意自然數(shù)均有xn+1=f(xn),則x2004的值為()

A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.46.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.47.已知隨機變量ξ服從正態(tài)分布N(2,a2),且P(ξ<4)=0.8,則P(0<ξ<2)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:C48.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()

A.1條

B.2條

C.3條

D.4條答案:B49.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A50.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為______.答案:設A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當且僅當a=4,b=2時,等號成立),故三角形OAB面積S=12

ab≥4,故為4.第3卷一.綜合題(共50題)1.如圖,在△ABC中,D是AC的中點,E是BD的中點,AE交BC于F,則的值等于()

A.

B.

C.

D.

答案:A2.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D3.設向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B4.設全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.5.圓ρ=5cosθ-5sinθ的圓心的極坐標是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A6.若a=()x,b=x3,c=logx,則當x>1時,a,b,c的大小關系式()

A.a(chǎn)<b<c

B.c<b<a

C.c<a<b

D.a(chǎn)<c<b答案:C7.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設上底面半徑為r,因為圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A8.已知兩點A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A9.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負?2k-4<0?k<2.故為:C10.無論m,n取何實數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標為

A.(-1,3)

B.

C.

D.答案:D11.以知F是雙曲線x24-y212=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為______.答案:∵A點在雙曲線的兩只之間,且雙曲線右焦點為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當且僅當A、P、F’三點共線時等號成立.故為912.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.13.能較好地反映一組數(shù)據(jù)的離散程度的是()

A.眾數(shù)

B.平均數(shù)

C.標準差

D.極差答案:C14.平面α外一點P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()

A.梯形

B.圓外切四邊形

C.圓內(nèi)接四邊

D.任意四邊形答案:B15.一直線傾斜角的正切值為34,且過點P(1,2),則直線方程為______.答案:因為直線傾斜角的正切值為34,即k=3,又直線過點P(1,2),所以直線的點斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.16.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因為正方形的邊長為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.17.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值時兩圓外切?

(2)m取何值時兩圓內(nèi)切?

(3)當m=45時,求兩圓的公共弦所在直線的方程和公共弦的長.答案:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)當m=45時,兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長為211-4=27.18.若關于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。19.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點A作AM⊥BD與點M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.20.設橢圓(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為,則此橢圓的方程為(

A.

B.

C.

D.答案:B21.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點,且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點D為AE的中點,AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:3422.如圖程序運行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當n=12時,不滿足“s<10”,則輸出n的值2故為:223.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O為圓心,12AB為半徑的圓上.24.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;

11.25.設向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為______.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.26.點(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A27.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.28.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an,共n個數(shù)據(jù).我們規(guī)定所測量的“量佳近似值”a是這樣一個量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。鶕?jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann29.直線3x+5y-1=0與4x+3y-5=0的交點是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C30.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.31.在研究打酣與患心臟病之間的關系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關”的結(jié)論,并且有99%以上的把握認為這個結(jié)論是成立的.下列說法中正確的是()

A.100個心臟病患者中至少有99人打酣

B.1個人患心臟病,則這個人有99%的概率打酣

C.100個心臟病患者中一定有打酣的人

D.100個心臟病患者中可能一個打酣的人都沒有答案:D32.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C33.如圖,在△OAB中,P為線段AB上的一點,,且,則()

A.

B.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論