版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年湖南高爾夫旅游職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.“所有10的倍數(shù)都是5的倍數(shù),某數(shù)是10的倍數(shù),則該數(shù)是5的倍數(shù),”上述推理()
A.完全正確
B.推理形式不正確
C.錯誤,因為大小前提不一致
D.錯誤,因為大前提錯誤答案:A2.在下列4個命題中,是真命題的序號為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D3.直線被圓x2+y2=9截得的弦長為(
)
A.
B.
C.
D.答案:B4.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=205.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()
A.+=
B.與方向相同
C.⊥
D.∥答案:D6.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A7.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則的度數(shù)為何()
A.50°
B.60°
C.100°
D.120°
答案:C8.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:2159.在平面直角坐標系xOy中,設F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關于曲線C有下列命題:
①曲線C是以F1、F2為焦點的橢圓的一部分;
②曲線C關于x軸、y軸、坐標原點O對稱;
③若P是上任意一點,則PF1+PF2≤10;
④若P是上任意一點,則PF1+PF2≥10;
⑤曲線C圍成圖形的面積為30.
其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤10.設a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.11.如圖,過點P作⊙O的割線PAB與切線PE,E為切點,連接AE、BE,∠APE的平分線分別與AE、BE相交于點C、D,若∠AEB=30°,則∠PCE=______.答案:如圖,PE是圓的切線,∴∠PEB=∠PAC,∵AE是∠APE的平分線,∴∠EPC=∠APC,根據(jù)三角形的外角與內(nèi)角關系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,∴∠EDC=∠ECD,∴△EDC為等腰三角形,又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,故為:75°.12.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標是______.答案:根據(jù)題意畫出相應的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設P的坐標為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標為(2,2).故為:(2,2)13.在repeat語句的一般形式中有“until
A”,其中A是
(
)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.14.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學歸納法證明:當x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學歸納法證明:當x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學歸納法證明:(?。┊攎=1時,原不等式成立;當m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設當m=k時,不等式成立,即(1+x)k≥1+kx,則當m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當m=k+1時,不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當n=1時,3≠4,等式不成立;當n=2時,32+42=52,等式成立;當n=3時,33+43+53=63,等式成立;當n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學歸納法證明:當x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊攎=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設當m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.15.從拋物線y2=4x上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設拋物線的焦點為F,則△MPF的面積為()
A.6
B.8
C.10
D.15答案:C16.設b是a的相反向量,則下列說法錯誤的是()
A.a(chǎn)與b的長度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C17.利用計算機隨機模擬方法計算y=x2與y=4所圍成的區(qū)域Ω的面積時,可以先運行以下算法步驟:
第一步:利用計算機產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機數(shù)a,b;
第二步:對隨機數(shù)a,b實施變換:答案:根據(jù)題意可得,點落在y=x2與y=4所圍成的區(qū)域Ω的點的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.18.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車,在這段時間內(nèi)有3班公共汽車,它們開車的時刻分別是7:40、7:50和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達車站的時刻是互相不牽連的,且每人在7:20至8:00時的任何時刻到達車站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車的概率為12×12=14,甲、乙同乘第二輛車的概率為14×14=116,甲、乙同乘第三輛車的概率為14×14=116,甲、乙同乘一車的概率為14+116+116=38,故選C.19.在極坐標系中,已知點P(2,),則過點P且平行于極軸的直線的方程是()
A.ρsinθ=1
B.ρsinθ=
C.ρcosθ=1
D.ρcosθ=答案:A20.若e1,e2是兩個不共線的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三點共線,則k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因為A,B,D三點共線,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故為:-421.數(shù)學歸納法證明“2n+1≥n2+n+2(n∈N*)”時,第一步驗證的表達式為______.答案:根據(jù)數(shù)學歸納法的步驟,首先要驗證證明當n取第一個值時命題成立;結(jié)合本題,要驗證n=1時,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對).22.設F1,F(xiàn)2是雙曲線的兩個焦點,點P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A23.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開式中x的系數(shù)為13,則x2的系數(shù)為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開式中x的系數(shù)為2Cm1=2m,(1+3x)n的展開式中x的系數(shù)為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開式中的x2系數(shù)為22Cm2,(1+3x)n的展開式中的x2系數(shù)為32Cn2∴當n=1m=5時,x2的系數(shù)為22Cm2+32Cn2=40當n=3m=2時,x2的系數(shù)為22Cm2+32Cn2=31故選C.24.計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.25.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;
②長江上某水文站觀察到一天中的水位X;
③某超市一天中的顧客量X.
其中的X是連續(xù)型隨機變量的是()
A.①
B.②
C.③
D.①②③答案:B26.如圖,一個正方體內(nèi)接于一個球,過球心作一個截面,則截面的可能圖形為(
)
A.①③
B.②④
C.①②③
D.②③④答案:C27.若隨機變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D28.已知D是△ABC所在平面內(nèi)一點,,則()
A.
B.
C.=
D.答案:A29.已知圓(x+2)2+y2=36的圓心為M,設A為圓上任一點,N(2,0),線段AN的垂直平分線交MA于點P,則動點P的軌跡是()
A.圓
B.橢圓
C.雙曲線
D.拋物線答案:B30.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.31.參數(shù)方程,(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C32.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.33.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()
A.
B.
C.2
D.4答案:A34.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,
=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.35.已知f(10x)=x,則f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故為:lg536.表示隨機事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個隨機事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.37.下列賦值語句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C38.在平行四邊形ABCD中,等于()
A.
B.
C.
D.答案:C39.若非零向量滿足,則()
A.
B.
C.
D.答案:C40.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B41.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()
A.2
B.3
C.4
D.5答案:C42.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()
A.9
B.18
C.27
D.36答案:B43.如圖,橢圓C2x2a2+
y2b2=1的焦點為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設n為過原點的直線,l是與n垂直相交與點P,與橢圓相交于A,B兩點的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設A、B兩點的坐標分別為A(x1,y1),B(x2,y2),假設使OA?OB=0成立的直線l存在.(i)當l不垂直于x軸時,設l的方程為y=kx+m,由l與n垂直相交于P點,且|OP|=1得|m|1+
k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡得-5(k2+1)=0矛盾.即此時直線l不存在.(ii)當l垂直于x軸時,滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點的坐標為(1,32),(1,-32)或(-1,32),(-1,-32).當x=1時,OA?OB=(1,32)?
(1,-32)=-54≠0.當x=-1時,OA?OB=(-1,32)?
(-1,-32)=-54≠0.∴此時直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.44.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.
A.0
B.3
C.2
D.1
答案:C45.從⊙O外一點P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點.求證:ACBC=ADBD.
答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.46.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是
______.答案:根據(jù)拋物線方程可求得焦點坐標為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)47.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:
甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(
4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙
(10分)乙參加更合適
(12分)48.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設正確的是()
A.假設|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設|f(1)|,|f(2)|,|f(3)|都不小于
D.假設|f(1)|,|f(2)|,|f(3)|都小于答案:D49.在500個人身上試驗某種血清預防感冒的作用,把一年中的記錄與另外500個未用血清的人作比較,結(jié)果如下:
未感冒
感冒
合計
試驗過
252
248
500
未用過
224
276
500
合計
476
524
1000
根據(jù)上表數(shù)據(jù),算得Χ2=3.14.以下推斷正確的是()
A.血清試驗與否和預防感冒有關
B.血清試驗與否和預防感冒無關
C.通過是否進行血清試驗可以預測是否得感冒
D.通過是否得感冒可以推斷是否進行了血清試驗答案:A50.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.第2卷一.綜合題(共50題)1.滿足條件|2z+1|=|z+i|的復數(shù)z在復平面上對應點的軌跡是______.答案:設復數(shù)z在復平面上對應點的坐標為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡可得x2+
y2+43x
=
0,表示一個圓,故為圓.2.若角α和β的兩邊分別對應平行且方向相反,則當α=45°時,β=______.答案:由題意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故為45°.3.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()
A.
B.
C.
D.答案:D4.寫出下列命題非的形式:
(1)p:函數(shù)f(x)=ax2+bx+c的圖象與x軸有唯一交點;
(2)q:若x=3或x=4,則方程x2-7x+12=0.答案:(1)函數(shù)f(x)=ax2+bx+c的圖象與x軸沒有交點或至少有兩個交點.(2)若x=3或x=4,則x2-7x+12≠0.5.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當0<a<1時函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當a>1時函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.6.某初級中學領導采用系統(tǒng)抽樣方法,從該校預備年級全體800名學生中抽50名學生做牙齒健康檢查.現(xiàn)將800名學生從1到800進行編號,求得間隔數(shù)k==16,即每16人抽取一個人.在1~16中隨機抽取一個數(shù),如果抽到的是7,則從33~48這16個數(shù)中應取的數(shù)是(
)
A.40
B.39
C.38
D.37答案:B7.(本題10分)設函數(shù)的定義域為A,的定義域為B.(1)求A;
(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略8.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(
)
A.0個
B.1個
C.2個
D.無窮多個答案:C9.在某項體育比賽中,七位裁判為一選手打出分數(shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分數(shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.10.雙曲線的中心在坐標原點,離心率等于2,一個焦點的坐標為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個焦點的坐標為(2,0),∴ca=2,
c=2且焦點在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進方程為y=±3x.故為y=±3x11.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數(shù)為8.故為:812.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D13.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A14.若關于x的不等式(1+k2)x≤k4+4的解集是M,則對任意實常數(shù)k,總有(
)
A.
B.
C.
D.,0∈M答案:A15.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點圖分析,y與x線性相關,則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標為(2,92).故為:(2,92).16.某人射擊一次擊中的概率為0.6,經(jīng)過3次射擊,此人至少有兩次擊中目標的概率為()
A.
B.
C.
D.答案:A17.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B18.已知一9行9列的矩陣中的元素是由互不相等的81個數(shù)組成,a11a12…a19a21a22…a29…………a91a92…a99若每行9個數(shù)與每列的9個數(shù)按表中順序分別構(gòu)成等差數(shù)列,且正中間一個數(shù)a55=7,則矩陣中所有元素之和為______.答案:∵每行9個數(shù)按從左至右的順序構(gòu)成等差數(shù)列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9個數(shù)按從上到下的順序也構(gòu)成等差數(shù)列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有數(shù)之和為81a55=567,故為567.19.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據(jù)這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B20.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()
A.10
B.20
C.40
D.50答案:C21.一個算法的流程圖如圖所示,則輸出的S值為______.答案:根據(jù)程序框圖,題意為求:s=2+4+6+8,計算得:s=20,故為:20.22.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B23.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個B.3個C.2個D.1個答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C24.直線l過橢圓x24+y23=1的右焦點F2并與橢圓交與A、B兩點,則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因為|AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.25.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因為直線y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.26.同時擲兩顆骰子,得到的點數(shù)和為4的概率是______.答案:同時擲兩顆骰子得到的點數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11227.選修4-4參數(shù)方程與極坐標
在平面直角坐標系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.28.如圖表示空間直角坐標系的直觀圖中,正確的個數(shù)為()
A.1個
B.2個
C.3個
D.4個答案:C29.給定兩個長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點C在以O為圓心的圓弧AB上變動,若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點C在以O為圓心的圓弧AB上變動,得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].30.下列關于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因為算法具有有窮性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.31.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數(shù)的數(shù)學期望是
______.答案:設含紅球個數(shù)為ξ,ξ的可能取值是0、1、2,當ξ=0時,表示從中取出2個球,其中不含紅球,當ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.32.8的值為()
A.2
B.4
C.6
D.8答案:B33.兩條直線x-y+6=0與x+y+6=0的夾角為()
A.
B.
C.0
D.答案:D34.
選修1:幾何證明選講
如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.35.下列語句不屬于基本算法語句的是()
A.賦值語句
B.運算語句
C.條件語句
D.循環(huán)語句答案:B36.集合{0,1}的子集有()個.A.1個B.2個C.3個D.4個答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個,故選D.37.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.38.在空間坐標中,點B是A(1,2,3)在yOz坐標平面內(nèi)的射影,O為坐標原點,則|OB|等于()
A.
B.
C.2
D.答案:B39.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)
(1)求實數(shù)a的值;
(2)求矩陣M的特征值及其對應的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.40.如圖,PA,PB切⊙O于
A,B兩點,AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°41.如圖P為空間中任意一點,動點Q在△ABC所在平面內(nèi)運動,且,則實數(shù)m=()
A.0
B.2
C.-2
D.1
答案:C42.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()
A.2
B.4
C.8
D.4答案:C43.設a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當且僅當a=b=c時,等號成立.44.如圖:一個力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.45.滿足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函數(shù)可以是f(x)=______.答案:若函數(shù)為對數(shù)函數(shù),不妨令f(x)=logax則f(xy)=loga(xy)=logax+logay=f(x)+f(y)滿足條件又∵f(3)=2∴l(xiāng)oga3=2解得a=3故f(x)=log3x故為:log3x46.圓ρ=5cosθ-5sinθ的圓心的極坐標是()
A.(-5,-)
B.(-5,)
C.(5,)
D.(-5,)答案:A47.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.48.設直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C49.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q
(1)p和q的值;
(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)
設在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230450.設點P(+,1)(t>0),則||(O為坐標原點)的最小值是()
A.
B.
C.5
D.3答案:A第3卷一.綜合題(共50題)1.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為152.回歸直線方程必定過點()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數(shù)據(jù)的樣本中心點,∴線性回歸方程y=bx+a表示的直線必經(jīng)過(.x,.y).故選D.3.設x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據(jù)柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當且僅當x1=y2=z3時,上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結(jié)合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:31474.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).5.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.6.如圖,在圓錐中,B為圓心,AB=8,BC=6
(1)求出這個幾何體的表面積;
(2)求出這個幾何體的體積.(保留π)答案:圓錐母線AC的長=AB2+BC2=82+62=10(1)表面積=π×62+π×6×10=96π(2)體積=13×π×62×8=96π7.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.8.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是
______,過這個圓外一點P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當切線斜率不存在時,顯然x=2符合題意;當切線斜率存在時,設切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.9.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.10.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c11.某校對文明班的評選設計了a,b,c,d,e五個方面的多元評價指標,并通過經(jīng)驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.12.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.13.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.14.已知△A′B′C′是水平放置的邊長為a的正三角形△ABC的斜二測平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長為a,故面積為34a2,而原圖和直觀圖面積之間的關系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.15.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,16.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應選擇的游戲盤的序號______
答案:(1)游戲盤的中獎概率為
38,(2)游戲盤的中獎概率為
14,(3)游戲盤的中獎概率為
26=13,(4)游戲盤的中獎概率為
13,(1)游戲盤的中獎概率最大.故為:(1).17.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.18.斜二測畫法的規(guī)則是:
(1)在已知圖形中建立直角坐標系xoy,畫直觀圖
時,它們分別對應x′和y′軸,兩軸交于點o′,使∠x′o′y′=______,它們確定的平面表示水平平面;
(2)
已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成
______;
(3)已知圖形中平行于x軸的線段的長度,在直觀圖中
______;平行于y軸的線段,在直觀圖中
______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半19.若點A的坐標為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準線方程為x=-12,設點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標是(2,2),故選D.20.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C21.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B22.設O為坐標原點,F(xiàn)為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標是
(
)A.B.C.D.答案:B解析:略23.曲線的極坐標方程ρ=4sinθ化為直角坐標方程為______.答案:將原極坐標方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.24.不等式的解集是(
)
A.
B.
C.
D.答案:D25.x=5
y=6
x+y=11
END
上面程序運行時輸出的結(jié)果是()
A.x+y=11
B.11
C.x+y
D.出錯信息答案:B26.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B27.已知,求證:答案:證明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等號成立的條件分別為,,故不能同時成立,從而.28.設F為拋物線y2=ax(a>0)的焦點,點P在拋物線上,且其到y(tǒng)軸的距離與到點F的距離之比為1:2,則|PF|等于()
A.
B.a(chǎn)
C.
D.答案:D29.一圓錐側(cè)面展開圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側(cè)面相交的交線為()A.圓B.拋物線C.雙曲線D.橢圓答案:設圓錐的母線長為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線與高的夾角的正弦值=rR=12,∴母線與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側(cè)面相交的交線為橢圓.故選D.30.若A(x,5-x,2x-1),B(1,x+2,2-x),當||取最小值時,x的值等于(
)
A.
B.
C.
D.答案:C31.圓的極坐標方程是ρ=2cosθ+2sinθ,則其圓心的極坐標是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A32.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=133.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學??萍夹〗M在計算機上模擬航天器變軌返回試驗,設計方案
如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為
對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.34.設二項式(33x+1x)n的展開式的各項系數(shù)的和為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年漢中資格證客運題庫
- 2024年沈陽客運駕駛從業(yè)資格證考試題庫答案
- 2024年武漢客運考試模擬題及答案詳解解析
- 2024年秦皇島小型客運從業(yè)資格證仿真考試題庫
- 超扎心測試測測你的生活關鍵詞是什么
- 城市燃氣初步設計
- 銀行入職心得體會范文7篇
- 高二生物備課組學期工作總結(jié)
- 工程測量實習報告15篇
- 運營主管競聘演講稿
- 市政協(xié)會議以來提案辦理工作承辦先進單位自薦材料
- 多巴胺的藥理作用及用法PPT參考幻燈片
- 鋼結(jié)構(gòu)網(wǎng)架翻新改造施工方案
- 水稻雄性不育系鑒定
- 劇本題材關愛殘疾人題材小品劇本;慈善三重奏.doc
- 空調(diào)凈化工程竣工驗收單及附件
- 建標 110-2021 綜合醫(yī)院建設標準
- 艾滋病實驗室檢測規(guī)范要求及方法選擇與質(zhì)量控制
- 廢舊設備回收拆除施工方案(完整版)
- 競業(yè)限制協(xié)議
- 中國歷史朝代順序表、年表(完整版)
評論
0/150
提交評論