2023年江蘇商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年江蘇商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年江蘇商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年江蘇商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年江蘇商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年江蘇商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.有這樣一段“三段論”推理,對于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);小前提:因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中錯誤的原因是______錯誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn)”,不是真命題,因?yàn)閷τ诳蓪?dǎo)函數(shù)f(x),如果f'(x0)=0,且滿足當(dāng)x>x0時和當(dāng)x<x0時的導(dǎo)函數(shù)值異號時,那么x=x0是函數(shù)f(x)的極值點(diǎn),∴大前提錯誤,故為:大前提.2.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標(biāo)對應(yīng)成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標(biāo)對應(yīng)成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標(biāo)對應(yīng)不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標(biāo)對應(yīng)成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.3.已知△ABC,D為AB邊上一點(diǎn),若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.4.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B5.M∪{1}={1,2,3}的集合M的個數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個數(shù)是2.故為:26.利用計(jì)算機(jī)隨機(jī)模擬方法計(jì)算y=x2與y=4所圍成的區(qū)域Ω的面積時,可以先運(yùn)行以下算法步驟:

第一步:利用計(jì)算機(jī)產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機(jī)數(shù)a,b;

第二步:對隨機(jī)數(shù)a,b實(shí)施變換:答案:根據(jù)題意可得,點(diǎn)落在y=x2與y=4所圍成的區(qū)域Ω的點(diǎn)的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.7.隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D8.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機(jī)取出一個球放入乙袋中,充分混合后,再從乙袋中隨機(jī)取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.9.下列四個函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項(xiàng)A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項(xiàng)A.選項(xiàng)B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對應(yīng)關(guān)系,故是同一個函數(shù),故選項(xiàng)B滿足條件.選項(xiàng)C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個函數(shù),故排除選項(xiàng)C.選項(xiàng)D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個函數(shù),故排除選項(xiàng)D,故選B.10.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()

A.5

B.

C.

D.答案:C11.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點(diǎn)P.若PB=1,PD=3,則BCAD的值為______.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.12.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點(diǎn)比1大,一個零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點(diǎn)比1大,一個零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)13.已知雙曲線的兩條準(zhǔn)線將兩焦點(diǎn)間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.14.已知△ABC三個頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.15.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C16.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).17.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長.答案:曲線C的極坐標(biāo)方程是ρ=4cosθ化為直角坐標(biāo)方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長24-12=14.18.想要檢驗(yàn)是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗(yàn)()

A.H0:男性喜歡參加體育活動

B.H0:女性不喜歡參加體育活動

C.H0:喜歡參加體育活動與性別有關(guān)

D.H0:喜歡參加體育活動與性別無關(guān)答案:D19.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α20.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.21.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send22.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D23.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE可表示為(用a,b、c表示).

()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.24.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進(jìn)行分時計(jì)價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量

(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量

(單位:千瓦時)低谷電價(單位:

元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計(jì)費(fèi)方式該家庭本月應(yīng)付的電費(fèi)為______元(用數(shù)字作答)答案:高峰時間段用電的電費(fèi)為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費(fèi)為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費(fèi)為118.1+30.3=148.4(元),故為:148.4.25.先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.答案:(1)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.∴直線ax+by+c=0與圓x2+y2=1相切的概率是236=118(2)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵三角形的一邊長為5∴當(dāng)a=1時,b=5,(1,5,5)1種當(dāng)a=2時,b=5,(2,5,5)1種當(dāng)a=3時,b=3,5,(3,3,5),(3,5,5)2種當(dāng)a=4時,b=4,5,(4,4,5),(4,5,5)2種當(dāng)a=5時,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6種當(dāng)a=6時,b=5,6,(6,5,5),(6,6,5)2種故滿足條件的不同情況共有14種故三條線段能圍成不同的等腰三角形的概率為1436=718.26.一個長方體的長、寬、高之比為2:1:3,全面積為88cm2,則它的體積為

______cm3.答案:由長方體的長、寬、高之比為2:1:3,不妨設(shè)長、寬、高分別為2x,x,3x;則長方體的全面積為:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,這里取x=2;所以,長方體的體積為:V=2x?x?3x=4×2×6=48.故為:4827.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:

①至少有1個白球與至少有1個黃球;

②至少有1個黃球與都是黃球;

③恰有1個白球與恰有1個黃球.

其中互斥而不對立的事件共有()組.

A.0

B.1

C.2

D.3答案:A28.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B29.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()

A.-2

B.2

C.-

D.不存在答案:A30.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.31.教學(xué)大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D32.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()

A.24

B.48

C.144

D.288答案:C33.現(xiàn)有10個保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學(xué)校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.34.如果過點(diǎn)A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B35.用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設(shè)正確的是()

A.假設(shè)至少有一個鈍角

B.假設(shè)沒有一個鈍角

C.假設(shè)至少有兩個鈍角

D.假設(shè)沒有一個鈍角或至少有兩個鈍角答案:C36.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.37.若矩陣M=1111,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x',y')是所得的直線上一點(diǎn),[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.38.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).39.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(diǎn)(4,0),右準(zhǔn)線方程為:x=254.一個焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.40.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對應(yīng)變換作用下新曲線上的對應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x41.已知直線l的參數(shù)方程為x=12ty=22+32t(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox方向?yàn)闃O軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-π4)

(1)求直線l的傾斜角;

(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.答案:(1)直線參數(shù)方程可以化x=tcos60°y=22+tsin60°,根據(jù)直線參數(shù)方程的意義,這條經(jīng)過點(diǎn)(0,22),傾斜角為60°的直線.(2)l的直角坐標(biāo)方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標(biāo)方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.42.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1043.已知

|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a44.正方體AC1中,S,T分別是棱AA1,A1B1上的點(diǎn),如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點(diǎn),∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°45.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為______.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).46.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.47.以原點(diǎn)為圓心,且截直線3x+4y+15=0所得弦長為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.48.如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點(diǎn)O逆時針旋轉(zhuǎn)600到OD,則PD的長為()

A.3

B.

C.

D.

答案:D49.(選做題)某制藥企業(yè)為了對某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實(shí)驗(yàn)范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實(shí)驗(yàn)次數(shù)為(

)。答案:750.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)sinα<sin(α+β)時,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調(diào)遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.第2卷一.綜合題(共50題)1.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為(2,0),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點(diǎn)A到直線l的距離為______.答案:由題意得點(diǎn)A(2,0),直線l為

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴點(diǎn)A到直線l的距離為

|2+0+2|2=22,故為22.2.給出下列結(jié)論:

(1)兩個變量之間的關(guān)系一定是確定的關(guān)系;

(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;

(3)回歸分析是對具有函數(shù)關(guān)系的兩個變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;

(4)回歸分析是對具有相關(guān)關(guān)系的兩個變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

以上結(jié)論中,正確的有幾個?()

A.1

B.2

C.3

D.4答案:A3.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應(yīng)增加的項(xiàng)數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C4.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.5.已知直線l經(jīng)過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點(diǎn)M在直線x+y-3=0上.求直線l的方程.答案:∵點(diǎn)M在直線x+y-3=0上,∴設(shè)點(diǎn)M坐標(biāo)為(t,3-t),則點(diǎn)M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點(diǎn)A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.6.將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點(diǎn)關(guān)于原點(diǎn)對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點(diǎn)關(guān)于原點(diǎn)對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.7.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(

A.2

B.5

C.2或5

D.或答案:A8.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點(diǎn)為P(2,3),求過兩點(diǎn)Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.9.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D10.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A11.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).12.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:413.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an,共n個數(shù)據(jù).我們規(guī)定所測量的“量佳近似值”a是這樣一個量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最小.依此規(guī)定,從a1,a2,…,an推出的a=______.答案:∵所測量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。鶕?jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann14.已知大于1的正數(shù)x,y,z滿足x+y+z=33.

(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時,等號成立.故所求的最小值是3.15.已知函數(shù)f(x)=x+3x+1(x≠-1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).

(Ⅰ)用數(shù)學(xué)歸納法證明bn≤(3-1)n2n-1;

(Ⅱ)證明Sn<233.答案:證明:(Ⅰ)當(dāng)x≥0時,f(x)=1+2x+1≥1.因?yàn)閍1=1,所以an≥1(n∈N*).下面用數(shù)學(xué)歸納法證明不等式bn≤(3-1)n2n-1.(1)當(dāng)n=1時,b1=3-1,不等式成立,(2)假設(shè)當(dāng)n=k時,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,當(dāng)n=k+1時,不等式也成立.根據(jù)(1)和(2),可知不等式對任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)?1-(3-12)n1-3-12<(3-1)?11-3-12=233.故對任意n∈N*,Sn<233.16.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C17.直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個數(shù)為______.答案:由函數(shù)定義知當(dāng)函數(shù)在x=1處有定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個數(shù)為1,若函數(shù)在x=1處有無定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個數(shù)為0或1故為0或118.回歸直線方程必定過點(diǎn)()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數(shù)據(jù)的樣本中心點(diǎn),∴線性回歸方程y=bx+a表示的直線必經(jīng)過(.x,.y).故選D.19.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)20.下列各圖象中,哪一個不可能是函數(shù)

y=f(x)的圖象()A.

B.

C.

D.

答案:函數(shù)表示每個輸入值對應(yīng)唯一輸出值的一種對應(yīng)關(guān)系.選項(xiàng)D,對于x=1時有兩個輸出值與之對應(yīng),故不是函數(shù)圖象故選D.21.一個盒子裝有10個紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個,若從盒子里隨機(jī)取出3個乒乓球,則其中含有紅色乒乓球個數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.22.橢圓焦點(diǎn)在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點(diǎn),滿足OM⊥ON,求橢圓方程.答案:設(shè)橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設(shè)M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.23.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()

A.都是兩個點(diǎn)

B.一條直線和一個圓

C.前者為兩個點(diǎn),后者是一條直線和一個圓

D.前者是一條直線和一個圓,后者是兩個圓答案:D24.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+

(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時,5t2-2t+2的最小值為95所以當(dāng)t=15時,|b-a|的最小值是95=355故為:35525.(選做題)某制藥企業(yè)為了對某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實(shí)驗(yàn)范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實(shí)驗(yàn)次數(shù)為(

)。答案:726.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運(yùn)行過程中各變量值變化如下表:是否繼續(xù)循環(huán)

S

K循環(huán)前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最終輸出結(jié)果k=4故為A27.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B28.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經(jīng)過原點(diǎn)的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標(biāo)為(2,2),∵圓經(jīng)過原點(diǎn),∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.29.已知橢圓中心在原點(diǎn),一個焦點(diǎn)為(3,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4

b2=1∴x24+

y2=1故為:∴x24+

y2=1.30.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,則∴左邊=≥=.∴原不等式成立.31.點(diǎn)O是四邊形ABCD內(nèi)一點(diǎn),滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點(diǎn)為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點(diǎn)都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=

AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.32.拋物線x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A33.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:334.下列說法正確的是()

A.向量

與向量是共線向量,則A、B、C、D必在同一直線上

B.向量與平行,則與的方向相同或相反

C.向量的長度與向量的長度相等

D.單位向量都相等答案:C35.

如圖,平面內(nèi)向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2

,則λ等()

A.

B.1

C.

D.2

答案:D36.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.37.已知0≤θ<2π,復(fù)數(shù)icosθ+isinθ>0,則θ的值是()A.π2B.3π2C.(0,π)內(nèi)的任意值D.(0,π2)∪(3π2,2π)內(nèi)的任意值答案:復(fù)數(shù)icosθ+isinθ>0,可得icosθ+sinθ>0,因?yàn)?≤θ<2π,所以θ=π2.故選A.38.如圖,AB是半圓O的直徑,C是AB延長線上一點(diǎn),CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.39.如圖算法輸出的結(jié)果是______.答案:當(dāng)I=1時,滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當(dāng)I=4時,滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當(dāng)I=7時,滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當(dāng)I=10時,滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當(dāng)I=13時,不滿足循環(huán)的條件,退出循環(huán),輸出S值16故為:1640.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運(yùn)行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因?yàn)閕=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.41.拋物線y2=4px(p>0)的準(zhǔn)線與x軸交于M點(diǎn),過點(diǎn)M作直線l交拋物線于A、B兩點(diǎn).

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點(diǎn)依次為N1,N2,N3,…,當(dāng)0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點(diǎn)坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點(diǎn)依次為N1,N2,N3,(0<p<1).∴點(diǎn)Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).42.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.43.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實(shí)數(shù)λ等于()

A.

B.

C.

D.答案:D44.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標(biāo)對應(yīng)成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標(biāo)對應(yīng)成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標(biāo)對應(yīng)不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標(biāo)對應(yīng)成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.45.用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個二個試點(diǎn)為好點(diǎn),則第三個試點(diǎn)應(yīng)選在(

)。答案:123646.某賽季,甲、乙兩名籃球運(yùn)動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運(yùn)動員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.47.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.48.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點(diǎn),M(12,0),則|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2249.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.50.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.

B.

C.

D.

答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項(xiàng)B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點(diǎn)在y軸,由此排除A.故選C.第3卷一.綜合題(共50題)1.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.2.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()

A.

B.2

C.1

D.-1答案:D3.某總體容量為M,其中帶有標(biāo)記的有N個,現(xiàn)用簡單隨機(jī)抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標(biāo)記的個數(shù)估計(jì)為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標(biāo)記的魚所占比例是NM,故樣本中帶有標(biāo)記的個數(shù)估計(jì)為mNM,故選A.4.一個算法的流程圖如圖所示,則輸出S的值為

.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計(jì)算得:s=45,故為:45.5.已知D是△ABC所在平面內(nèi)一點(diǎn),,則()

A.

B.

C.=

D.答案:A6.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級高個子學(xué)生B.校園中長的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.7.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點(diǎn)分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B8.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.9.若數(shù)列{an}(n∈N+)為等差數(shù)列,則數(shù)列bn=a1+a2+a3+…+ann(n∈N+)也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若數(shù)列{cn}是等比數(shù)列且cn>0(n∈N+),則有數(shù)列dn=______(n∈N+)也是等比數(shù)列.答案:從商類比開方,從和類比到積,可得如下結(jié)論:nC1C2C3Cn故為:nC1C2C3Cn10.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)11.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為x1(x1>0),過點(diǎn)A作拋物線C的切線l1交x軸于點(diǎn)D,交y軸于點(diǎn)Q,交直線l:y=p2于點(diǎn)M,當(dāng)|FD|=2時,∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側(cè)的拋物線C上,過點(diǎn)B作拋物線C的切線l2交直線l1于點(diǎn)P,交直線l于點(diǎn)N,求△PMN面積的最小值,并求取到最小值時的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點(diǎn)A,Q,D的坐標(biāo)可知:D為線段AQ的中點(diǎn),∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點(diǎn)P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點(diǎn)M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點(diǎn)P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時,S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時,S(t)單調(diào)遞增,所以當(dāng)t=33時,S取到最小值為1639,此時b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時的x1值為233.12.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1213.在repeat語句的一般形式中有“until

A”,其中A是

(

)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標(biāo)志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.14.已知點(diǎn)A(1-t,1-t,t),B(2,t,t),則A、B兩點(diǎn)距離的最小值為()

A.

B.

C.

D.2答案:A15.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.16.設(shè)集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點(diǎn),點(diǎn)的橫坐標(biāo),縱坐標(biāo)都是自然數(shù),且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.17.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B18.在某路段檢測點(diǎn)對200輛汽車的車速進(jìn)行檢測,檢測結(jié)果表示為如圖所示的頻率分布直方圖,則車速不小于90km/h的汽車有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.19.b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機(jī)數(shù).答案:∵b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機(jī)數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機(jī)數(shù),故為:[-6,-3]20.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C21.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,522.在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,要先后實(shí)施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實(shí)施時必須相鄰,請問實(shí)驗(yàn)順序的編排方法共有()

A.24種

B.48種

C.96種

D.144種答案:C23.某個幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.24.求證:答案:證明見解析解析:證:∴25.集合{1,2,3}的真子集的個數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個.故選C.26.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.27.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有幾處錯誤,請找出錯誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;

②PRINT

n+1

應(yīng)改為PRINT

n;

③S=1應(yīng)改為S=0.28.已知

|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a29.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.30.設(shè)向量=(0,2),=,則,的夾角等于(

A.

B.

C.

D.答案:A31.設(shè)O、A、B、C為平面上四個點(diǎn),(

A.2

B.2

C.3

D.3答案:C32.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B33.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.34.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.35.滿足條件|2z+1|=|z+i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)的軌跡是______.答案:設(shè)復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)的坐標(biāo)為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡可得x2+

y2+43x

=

0,表示一個圓,故為圓.36.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積為6,則△ABC的面積為()A.18B.54C.64D.72答案:∵ABCD為平行四邊形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論