2023年河北建材職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年河北建材職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年河北建材職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年河北建材職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年河北建材職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩46頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年河北建材職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()

A.

B.

C.

D.答案:A2.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()

A.a(chǎn)<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a(chǎn)<b<1<d<c

答案:B3.在直角坐標(biāo)系內(nèi),坐標(biāo)軸上的點(diǎn)構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時(shí)為零}答案:在x軸上的點(diǎn)(x,y),必有y=0;在y軸上的點(diǎn)(x,y),必有x=0,∴xy=0.∴直角坐標(biāo)系中,x軸上的點(diǎn)的集合{(x,y)|y=0},直角坐標(biāo)系中,y軸上的點(diǎn)的集合{(x,y)|x=0},∴坐標(biāo)軸上的點(diǎn)的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.4.在對(duì)吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()

A.若隨機(jī)變量K2的觀測(cè)值k>6.635,我們有99%的把握說(shuō)明吸煙與患肺病有關(guān),則若某人吸煙,那么他有99%的可能患有肺病

B.若由隨機(jī)變量求出有99%的把握說(shuō)吸煙與患肺病有關(guān),則在100個(gè)吸煙者中必有99個(gè)人患有肺病

C.若由隨機(jī)變量求出有95%的把握說(shuō)吸煙與患肺病有關(guān),那么有5%的可能性使得推斷錯(cuò)誤

D.以上說(shuō)法均不正確答案:D5.設(shè)a,b,c是正實(shí)數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.6.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長(zhǎng).答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′7.滿(mǎn)足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是______.答案:|z|=5,即點(diǎn)Z到原點(diǎn)O的距離為5∴z所對(duì)應(yīng)點(diǎn)的軌跡為以(0,0)為圓心,5為半徑的圓.8.如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過(guò)圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)600到OD,則PD的長(zhǎng)為()

A.3

B.

C.

D.

答案:D9.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個(gè)位置取一件檢驗(yàn),則這種抽樣方法是()A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點(diǎn),每隔一定的間隔抽取一個(gè)單位的一種抽樣方式.故選B.10.一個(gè)公司共有240名員工,下設(shè)一些部門(mén),要采用分層抽樣方法從全體員工中抽取一個(gè)容量為20的樣本.已知某部門(mén)有60名員工,那么從這一部門(mén)抽取的員工人數(shù)是______.答案:每個(gè)個(gè)體被抽到的概率是

20240=112,那么從甲部門(mén)抽取的員工人數(shù)是60×112=5,故為:5.11.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱(chēng)軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B12.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60

cm,燈深40

cm,則光源到反射鏡頂點(diǎn)的距離是

______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.13.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過(guò)兩點(diǎn)O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點(diǎn)到兩圓的切線長(zhǎng)相等答案:D14.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。15.定義集合運(yùn)算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當(dāng)x=0時(shí),z=0,當(dāng)x=1,y=2時(shí),z=6,當(dāng)x=1,y=3時(shí),z=12,故所有元素之和為18,故選D16.甲、乙兩人破譯一種密碼,它們能破譯的概率分別為和,求:

(1)恰有一人能破譯的概率;(2)至多有一人破譯的概率;

(3)若要破譯出的概率為不小于,至少需要多少甲這樣的人?答案:(1)(2)(3)至少需4個(gè)甲這樣的人才能滿(mǎn)足題意.解析:(1)設(shè)A為“甲能譯出”,B為“乙能譯出”,則A、B互相獨(dú)立,從而A與、與B、與均相互獨(dú)立.“恰有一人能譯出”為事件,又與互斥,則(2)“至多一人能譯出”的事件,且、、互斥,∴(3)設(shè)至少需要n個(gè)甲這樣的人,而n個(gè)甲這樣的人譯不出的概率為,∴n個(gè)甲這樣的人能譯出的概率為,由∴至少需4個(gè)甲這樣的人才能滿(mǎn)足題意.17.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線;

(2)若AB=6,AE=245,求BD和BC的長(zhǎng).答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯(cuò)角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽R(shí)t△CAB.∴AC2=1445由勾股定理得BC=655.18.已知f(x)=,則不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}19.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn),求證:AB2=BE·CD。

答案:證明:連結(jié)AC,因?yàn)镋A切⊙O于A,所以∠EAB=∠ACB,因?yàn)椋浴螦CD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。20.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為_(kāi)_____.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.21.已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過(guò)點(diǎn)M(0,2),求橢圓c的方程答案:若焦點(diǎn)在x軸很明顯,過(guò)點(diǎn)M(0,2)點(diǎn)M即橢圓的上端點(diǎn),所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點(diǎn)在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.22.已知圓錐的母線長(zhǎng)與底面半徑長(zhǎng)之比為3:1,一個(gè)正方體有四個(gè)頂點(diǎn)在圓錐的底面內(nèi),另外的四個(gè)頂點(diǎn)在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D23.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對(duì)應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)24.

圓ρ=(cosθ+sinθ)的圓心的極坐標(biāo)是()

A.(1,)

B.(,)

C.(,)

D.(2,)

答案:A25.下列四個(gè)散點(diǎn)圖中,使用線性回歸模型擬合效果最好的是()

A.

B.

C.

D.

答案:D26.天氣預(yù)報(bào)說(shuō),在今后的三天中每一天下雨的概率均為40%,用隨機(jī)模擬的方法進(jìn)行試驗(yàn),由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用計(jì)算器中的隨機(jī)函數(shù)產(chǎn)生0~9之間隨機(jī)整數(shù)的20組如下:

907966191925271932812458569683

431257393027556488730113537989

通過(guò)以上隨機(jī)模擬的數(shù)據(jù)可知三天中恰有兩天下雨的概率近似為(

)。答案:0.2527.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為728.下面五個(gè)命題:(1)所有的單位向量相等;(2)長(zhǎng)度不等且方向相反的兩個(gè)向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對(duì)于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號(hào)為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯(cuò)誤;(2)由共線向量的定義,方向相反的兩個(gè)向量一定是共線向量,故錯(cuò)誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯(cuò)誤;(4)因?yàn)閨a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)29.設(shè)平面α內(nèi)兩個(gè)向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B30.兩條互相平行的直線分別過(guò)點(diǎn)A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.

求:

(1)d的變化范圍;

(2)當(dāng)d取最大值時(shí)兩條直線的方程.答案:(1)方法一:①當(dāng)兩條直線的斜率不存在時(shí),即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當(dāng)兩條直線的斜率存在時(shí),設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當(dāng)d取最大值時(shí),兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)31.(文)對(duì)于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運(yùn)算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運(yùn)算性質(zhì)一定成立的所有序號(hào)是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.32.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.33.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線性回歸方程為y=bx+a必過(guò)點(diǎn)()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B34.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長(zhǎng)等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個(gè)法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個(gè)法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3335.已知點(diǎn)A(-3,8),B(2,4),若y軸上的點(diǎn)P滿(mǎn)足PA的斜率是PB斜率的2倍,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)P(0,y),則∵點(diǎn)P滿(mǎn)足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)36.命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.37.在某項(xiàng)體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:

90

89

90

95

93

94

93

去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)的平均值和方差分別為()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B38.極坐標(biāo)方程ρcos2θ=0表示的曲線為()

A.極點(diǎn)

B.極軸

C.一條直線

D.兩條相交直線答案:D39.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點(diǎn)共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長(zhǎng)PE、PF、PG、PH交對(duì)邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.40.已知(2x+1)3的展開(kāi)式中,二項(xiàng)式系數(shù)和為a,各項(xiàng)系數(shù)和為b,則a+b=______.(用數(shù)字表示)答案:由題意可得(2x+1)3的展開(kāi)式中,二項(xiàng)式系數(shù)和為a=23=8令x=1可得各項(xiàng)系數(shù)和為b=(2+1)3=27∴a+b=35故為:3541.已知兩個(gè)非空集合A、B滿(mǎn)足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類(lèi)討論若A={1,2,3},則B是A的子集即可滿(mǎn)足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C42.橢圓x225+y29=1的兩焦點(diǎn)為F1,F(xiàn)2,一直線過(guò)F1交橢圓于P、Q,則△PQF2的周長(zhǎng)為_(kāi)_____.答案:∵a=5,由橢圓第一定義可知△PQF2的周長(zhǎng)=4a.∴△PQF2的周長(zhǎng)=20.,故為20.43.已知D是△ABC所在平面內(nèi)一點(diǎn),,則()

A.

B.

C.=

D.答案:A44.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C45.雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),∴ca=2,

c=2且焦點(diǎn)在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進(jìn)方程為y=±3x.故為y=±3x46.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D47.將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語(yǔ)句正確一組是()

A.

B.

C.

D.

答案:B48.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.49.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為_(kāi)_____.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.50.從直徑AB的延長(zhǎng)線上取一點(diǎn)C,過(guò)點(diǎn)C作該圓的切線,切點(diǎn)為D,若∠ACD的平分線交AD于點(diǎn)E,則∠CED的度數(shù)是()

A.30°

B.45°

C.60°

D.隨點(diǎn)C的變化而變化答案:B第2卷一.綜合題(共50題)1.一名同學(xué)先后投擲一枚骰子兩次,第一次向上的點(diǎn)數(shù)記為x,第二次向上的點(diǎn)數(shù)記為y,在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結(jié)果,滿(mǎn)足條件的事件是(x,y)為坐標(biāo)的點(diǎn)落在直線2x+y=8上,當(dāng)x=1,y=6;x=2,y=4;x=3,y=2,共有3種結(jié)果,∴根據(jù)古典概型的概率公式得到P=336=112,故選B.2.長(zhǎng)方體的共頂點(diǎn)的三個(gè)側(cè)面面積分別為3,5,15,則它的體積為_(kāi)_____.答案:設(shè)長(zhǎng)方體過(guò)同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c,∵從長(zhǎng)方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長(zhǎng)方體的體積為15,故為:15.3.已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()

A.

B.

C.2

D.3

答案:C4.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B5.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.6.氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于22

(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進(jìn)入夏季的地區(qū)有()A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)答案:①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進(jìn)入夏季的地區(qū)有甲、乙、丙三地.故選D.7.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點(diǎn)重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點(diǎn)重合.故選C.8.根據(jù)學(xué)過(guò)的知識(shí),試把“推理與證明”這一章的知識(shí)結(jié)構(gòu)圖畫(huà)出來(lái).答案:根據(jù)“推理與證明”這一章的知識(shí)可得結(jié)構(gòu)圖,如圖所示.9.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過(guò)計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是()

A.有99%的人認(rèn)為該欄目?jī)?yōu)秀

B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系

C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

D.沒(méi)有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D10.A、B是直線l上的兩點(diǎn),AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點(diǎn)間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4311.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡(jiǎn)單隨機(jī)抽樣的兩種不同抽取方法故選C12.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()

A.

B.

C.

D.1答案:A13.已知a=20.5,,,則a,b,c的大小關(guān)系是()

A.a(chǎn)>c>b

B.a(chǎn)>b>c

C.c>b>a

D.c>a>b答案:B14.如圖,割線PAB經(jīng)過(guò)圓心O,PC切圓O于點(diǎn)C,且PC=4,PB=8,則△PBC的外接圓的面積為_(kāi)_____.答案:∵PC切圓O于點(diǎn)C,∴根據(jù)切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設(shè)△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π15.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B16.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A17.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過(guò)點(diǎn)(3,8),求f(4)=______.答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.18.點(diǎn)M(2,-3,1)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的點(diǎn)是()

A.(-2,3,-1)

B.(-2,-3,-1)

C.(2,-3,-1)

D.(-2,3,1)答案:A19.將一枚骰子連續(xù)拋擲600次,請(qǐng)你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)的6個(gè)點(diǎn)數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計(jì)每一個(gè)嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點(diǎn)數(shù)大于2的大約有400次,故為:400.20.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l3與l2間的距離是2,正△ABC的三頂點(diǎn)分別在l1,l2,l3上,則△ABC的邊長(zhǎng)是______.答案:如圖,過(guò)A,C作AE,CF垂直于L2,點(diǎn)E,F(xiàn)是垂足,將Rt△BCF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°至Rt△BAD處,延長(zhǎng)DA交L2于點(diǎn)G.由作圖可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故為:221321.一個(gè)公司共有240名員工,下設(shè)一些部門(mén),要采用分層抽樣方法從全體員工中抽取一個(gè)容量為20的樣本.已知某部門(mén)有60名員工,那么從這一部門(mén)抽取的員工人數(shù)是______.答案:每個(gè)個(gè)體被抽到的概率是

20240=112,那么從甲部門(mén)抽取的員工人數(shù)是60×112=5,故為:5.22.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B23.已知線段AB的兩端點(diǎn)坐標(biāo)為A(9,-3,4),B(9,2,1),則線段AB與坐標(biāo)平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內(nèi)的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C24.(1+x)6的各二項(xiàng)式系數(shù)的最大值是______.答案:根據(jù)二項(xiàng)展開(kāi)式的性質(zhì)可得,(1+x)6的各二項(xiàng)式系數(shù)的最大值C36=20故為:2025.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對(duì)其中6題,乙能答對(duì)其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.26.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)27.用秦九韶算法求多項(xiàng)式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時(shí)的值.答案:根據(jù)秦九韶算法,把多項(xiàng)式改寫(xiě)成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時(shí),多項(xiàng)式的值為1397.28.如圖中的陰影部分用集合表示為_(kāi)_____.答案:由已知中陰影部分所表示的集合元素滿(mǎn)足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)29.設(shè)直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+

c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.30.橢圓x225+y29=1的兩焦點(diǎn)為F1,F(xiàn)2,一直線過(guò)F1交橢圓于P、Q,則△PQF2的周長(zhǎng)為_(kāi)_____.答案:∵a=5,由橢圓第一定義可知△PQF2的周長(zhǎng)=4a.∴△PQF2的周長(zhǎng)=20.,故為20.31.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.32.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或33.如圖,AB是半圓O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD切半圓于D,CD=4,AB=3BC,則AC的長(zhǎng)是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長(zhǎng)是8.故填:8.34.已知曲線C上的動(dòng)點(diǎn)P(x,y)滿(mǎn)足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動(dòng)點(diǎn)E在直線l上,過(guò)點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.

(ⅰ)求證:直線AB恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過(guò)點(diǎn)A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過(guò)E點(diǎn),∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點(diǎn)為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過(guò)定點(diǎn)(0,2)(10分)(ⅱ)由(?。┲狝B中點(diǎn)N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時(shí),則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點(diǎn)M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時(shí)E(±2,-2),當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿(mǎn)足條件的點(diǎn)E綜上可得:滿(mǎn)足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)35.頂點(diǎn)在原點(diǎn),焦點(diǎn)是(0,5)的拋物線方程是()

A.x2=20y

B.y2=20x

C.y2=x

D.x2=y答案:A36.函數(shù)y=(12)x的值域?yàn)開(kāi)_____.答案:因?yàn)楹瘮?shù)y=(12)x是指數(shù)函數(shù),所以它的值域是(0,+∞).故為:(0,+∞).37.已知向量=(x,1),=(3,6),且⊥,則實(shí)數(shù)x的值為()

A.

B.-2

C.2

D.-答案:B38.如圖,中心均為原點(diǎn)O的雙曲線與橢圓有公共焦點(diǎn),M,N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長(zhǎng)軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點(diǎn),M,O,N將橢圓長(zhǎng)軸四等分∴橢圓的長(zhǎng)軸長(zhǎng)是雙曲線實(shí)軸長(zhǎng)的2倍∵雙曲線與橢圓有公共焦點(diǎn),∴雙曲線與橢圓的離心率的比值是2故選B.39.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.40.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實(shí)數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.

B.

C.

D.

答案:A選項(xiàng)中,直線的斜率大于0,故系數(shù)a,b的符號(hào)相反,此時(shí)曲線應(yīng)是雙曲線,故不對(duì);B選項(xiàng)中直線的斜率小于0,故系數(shù)a,b的符號(hào)相同且都為負(fù),此時(shí)曲線不存在,故不對(duì);C選項(xiàng)中,直線斜率為正,故系數(shù)a,b的符號(hào)相反,且a正,b負(fù),此時(shí)曲線應(yīng)是焦點(diǎn)在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項(xiàng)中不正確,由C選項(xiàng)的判斷可知D不正確.故選D41.方程組的解集是(

)答案:{(5,-4)}42.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C43.如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B,C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).

(Ⅰ)證明A,P,O,M四點(diǎn)共圓;

(Ⅱ)求∠OAM+∠APM的大小.答案:證明:(Ⅰ)連接OP,OM.因?yàn)锳P與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.因?yàn)镸是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內(nèi)部,可知四邊形M的對(duì)角互補(bǔ),所以A,P,O,M四點(diǎn)共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點(diǎn)共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點(diǎn)共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.44.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.45.一個(gè)多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長(zhǎng)為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A46.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿(mǎn)足定義域?yàn)椋?,+∞),故選A.47.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()

A.,,,

B.,,,

C.,,,

D.,,,

答案:A48.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()

A.“集合”的下位

B.“概念”的下位

C.“表示”的下位

D.“基本運(yùn)算”的下位

答案:D49.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60

cm,燈深40

cm,則光源到反射鏡頂點(diǎn)的距離是

______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.50.口袋中有5只球,編號(hào)為1,2,3,4,5,從中任取3球,以ξ表示取出的球的最大號(hào)碼,則Eξ的值是()A.4B.4.5C.4.75D.5答案:由題意,ξ的取值可以是3,4,5ξ=3時(shí),概率是1C35=110ξ=4時(shí),概率是C23C35=310(最大的是4其它兩個(gè)從1、2、3里面隨機(jī)?。│?5時(shí),概率是C24C35=610(最大的是5,其它兩個(gè)從1、2、3、4里面隨機(jī)?。嗥谕鸈ξ=3×110+4×310+5×610=4.5故選B.第3卷一.綜合題(共50題)1.過(guò)點(diǎn)A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為_(kāi)_____.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當(dāng)切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-3k+5=0,由點(diǎn)到直線的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線方程為:3x+4y-29=0;當(dāng)切線的斜率不存在時(shí),直線為:x=3,滿(mǎn)足圓心(2,3)到直線x=3的距離為圓的半徑1,x=3也是切線方程;故為:3x+4y-29=0或x=3.2.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.3.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對(duì)該批電子手表進(jìn)行測(cè)試,設(shè)第X次首次測(cè)到正品,則P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B4.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個(gè)等于0答案:D5.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.6.如圖是2010年青年歌手大獎(jiǎng)賽中,七位評(píng)委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0~9中的

一個(gè)),去掉一個(gè)最高分和一個(gè)最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個(gè)最高分和一個(gè)最低分以后,兩組數(shù)據(jù)都有五個(gè)數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B7.A、B為球面上相異兩點(diǎn),則通過(guò)A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無(wú)窮多個(gè)C.零個(gè)D.一個(gè)或無(wú)窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的無(wú)數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的一個(gè)大圓故選:D8.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會(huì)開(kāi)幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D9.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D10.(坐標(biāo)系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長(zhǎng)為_(kāi)_____.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長(zhǎng)l=225-92=82.故為:8211.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測(cè),今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺(tái)大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門(mén)提出以下三種方案:

方案1:運(yùn)走設(shè)備,此時(shí)需花費(fèi)4000元;

方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56

000元;

方案3:不采取措施,此時(shí),當(dāng)兩河流都發(fā)生洪水時(shí)損失達(dá)60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.

(1)試求方案3中損失費(fèi)ξ(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時(shí)發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設(shè)損失費(fèi)為隨機(jī)變量ξ,則ξ的分布列為:(2)對(duì)方案1來(lái)說(shuō),花費(fèi)4000元;對(duì)方案2來(lái)說(shuō),建圍墻需花費(fèi)1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時(shí),損失約56000元,而兩河流同時(shí)發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費(fèi)為:1000+56000×0.045=3520(元).對(duì)于方案來(lái)說(shuō),損失費(fèi)的數(shù)學(xué)期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.12.在測(cè)量某物理量的過(guò)程中,因儀器和觀察的誤差,使得n次測(cè)量分別得到a1,a2,…,an,共n個(gè)數(shù)據(jù).我們規(guī)定所測(cè)量的“量佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測(cè)量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。鶕?jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann13.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D14.如圖,在梯形ABCD中,對(duì)角線AC和BD交于點(diǎn)O,E、F分別是AC和BD的中點(diǎn),分別寫(xiě)出

(1)圖中與EF、CO共線的向量;

(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點(diǎn)可知,CE=EA,即與EA相等的向量為CE;15.設(shè)是的相反向量,則下列說(shuō)法一定錯(cuò)誤的是()

A.∥

B.與的長(zhǎng)度相等

C.是的相反向量

D.與一定不相等答案:D16.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(

A.2

B.5

C.2或5

D.或答案:A17.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長(zhǎng)線上,使||=2||,則點(diǎn)P的坐標(biāo)

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A18.在極坐標(biāo)系中,圓ρ=2cosθ與方程θ=(ρ>0)所表示的圖形的交點(diǎn)的極坐標(biāo)是(

A.(1,1)

B.(1,)

C.(,)

D.(,)答案:C19.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號(hào)知若y=ax遞增,則y=x+a與y軸的交點(diǎn)在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點(diǎn)在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.20.已知、分別是的外接圓和內(nèi)切圓;證明:過(guò)上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長(zhǎng)交于,則,,延長(zhǎng)交于;則,即;過(guò)分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.21.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號(hào).即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號(hào),即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號(hào).故為114.22.賦值語(yǔ)句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.將n的值賦給n+1

D.將n的值增加1,再賦給n,即n的值增加1答案:D23.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()

A.x>

B.x<

C.x>2

D.x<2答案:B24.電視機(jī)的使用壽命顯像管開(kāi)關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開(kāi)關(guān)了10000次還能繼續(xù)使用的概率是0.96,開(kāi)關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開(kāi)關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開(kāi)關(guān)了10000次還能繼續(xù)使用”為事件A,記“開(kāi)關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.25.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(

)g。答案:1618或138226.命題“零向量與任意向量共線”的否定為_(kāi)_____.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱(chēng)命題,其否定為特稱(chēng)命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.27.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無(wú)解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無(wú)窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒(méi)寫(xiě)出解扣1分)28.設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動(dòng)點(diǎn),已知|a|+|b|=4.

(1)求點(diǎn)p的軌跡方程;

(2)設(shè)點(diǎn)p的軌跡與x軸負(fù)半軸交于點(diǎn)A,過(guò)點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請(qǐng)說(shuō)明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以動(dòng)點(diǎn)P的軌跡M是以點(diǎn)E(-1,0),F(xiàn)(1,0)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓.因?yàn)閏=1,a=2,則b2=a2-c2=3.故動(dòng)點(diǎn)P的軌跡M方程是x24+y23=1(2)設(shè)直線BC的方程x=my+1與(1)中的橢圓方程x24+y23=1聯(lián)立消去x可得(3m2+4)y2+6my-9=0,設(shè)點(diǎn)B(x1,y1),C(x2,y2)則y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4點(diǎn)A到直線BC的距離d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面積最大值為9229.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)30.某簡(jiǎn)單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.31.已知點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()

A.

B.

C.

D.答案:D32.紙制的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開(kāi)、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B33.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571434.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個(gè)單位,同時(shí)向y軸正方向平移個(gè)單位.B.向x軸負(fù)方向平移個(gè)單位,同時(shí)向y軸正方向平移個(gè)單位.C.向x軸負(fù)方向平移個(gè)單位,同時(shí)向y軸負(fù)方向平移個(gè)單位.D.向x軸正方向平移個(gè)單位,同時(shí)向y軸負(fù)方向平移個(gè)單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.35.已知實(shí)數(shù)x,y滿(mǎn)足2x+y+5=0,那么x2+y2的最小值為_(kāi)_____.答案:x2+y2

表示直線2x+y+5=0上的點(diǎn)與原點(diǎn)的距離,其最小值就是原點(diǎn)到直線2x+y+5=0的距離|0+0+5|4+1=5,故為:5.36.如圖,已知⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,過(guò)點(diǎn)C作⊙O的切線l,過(guò)點(diǎn)A作l的垂線AD,垂足為D,則CD=______.

答案:如圖,連接OC,由題意DC是切線可得出OC⊥DC,再過(guò)過(guò)A作AE⊥OC于E,故有四邊形AECD是矩形,可得AE=CD又⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故為:125.37.用0、1、2、3、4、5這6個(gè)數(shù)字,可以組成無(wú)重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)為_(kāi)_____(用數(shù)字作答).答案:末尾是0時(shí),有A55=120種;末尾不是0時(shí),有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31238.“

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論