版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年江西應(yīng)用工程職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對答案:B2.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c3.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ4.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°5.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個事件均互斥
D.任意兩個事件均不互斥答案:B6.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三點(diǎn)共線,則k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三點(diǎn)共線,∴存在實(shí)數(shù)λ滿足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故為-23.7.曲線x=sin2ty=sint(t為參數(shù))的普通方程為______.答案:因?yàn)榍€x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).8.某公司一年購買某種貨物400噸,每次都購買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運(yùn)費(fèi)為4萬元/次,一年的總存儲費(fèi)用為4x萬元,一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最?。蕿椋?0.9.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()
A.
B.
C.且
D.或
答案:D10.給出下列四個命題,其中正確的一個是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報變量對解釋變量的貢獻(xiàn)率是80%
B.在獨(dú)立性檢驗(yàn)時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關(guān)系數(shù)r的絕對值越接近于1,表明兩個隨機(jī)變量線性相關(guān)性越強(qiáng)答案:D11.在極坐標(biāo)系中,圓ρ=-2cosθ的圓心的極坐標(biāo)是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D12.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時,a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:413.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點(diǎn)P(12,12),∴a12=12,?a=14.故選D.14.直線(t為參數(shù))的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D15.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點(diǎn)B(2,4),與y軸的交點(diǎn)C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(diǎn)(2,4),與x軸的交點(diǎn)A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.16.有一個質(zhì)地均勻的正四面體,它的四個面上分別標(biāo)有1,2,3,4這四個數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個古典概型,試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結(jié)果,滿足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結(jié)果,根據(jù)古典概型概率公式得到P=364,故為:364.17.若非零向量滿足,則()
A.
B.
C.
D.答案:C18.如圖所示,已知點(diǎn)P在正方體ABCD—A′B′C′D′的對角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點(diǎn),DA為單位長度建立空間直角坐標(biāo)系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因?yàn)閏os〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個法向量是=(0,1,0).因?yàn)閏os〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.19.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當(dāng)a<9時,不等式對x∈R均成立.故為(-∞,9).20.不等式|x-500|≤5的解集是______.答案:因?yàn)椴坏仁絴x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.21.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為922.設(shè)a,b是不共線的兩個向量,已知=2+m,=+,=-2.若A,B,D三點(diǎn)共線,則m的值為()
A.1
B.2
C.-2
D.-1答案:D23.在直角坐標(biāo)系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實(shí)數(shù)m=______.答案:把AB、AC平移,使得點(diǎn)A與原點(diǎn)重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時,AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時,AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時,AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或024.當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時,點(diǎn)P的坐標(biāo)為______.答案:根據(jù)圓的參數(shù)方程的意義,當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時,點(diǎn)P的坐標(biāo)為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).25.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;
(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.
…(14分)26.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102027.用數(shù)學(xué)歸納法證明“<n+1
(n∈N*)”.第二步證n=k+1時(n=1已驗(yàn)證,n=k已假設(shè)成立),這樣證明:=<=(k+1)+1,所以當(dāng)n=k+1時,命題正確.此種證法()
A.是正確的
B.歸納假設(shè)寫法不正確
C.從k到k+1推理不嚴(yán)密
D.從k到k+1推理過程未使用歸納假設(shè)答案:D28.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2
再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.29.某校有學(xué)生1
200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進(jìn)行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.30.
若向量
=(3,2),=(0,-1),=(-1,2),則向量2-的坐標(biāo)坐標(biāo)是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D31.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D32.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:333.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實(shí)數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8334.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對任意x0∈R,使x02+1≥0”故為:對任意x0∈R,使x02+1≥035.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A36.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點(diǎn),則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B37.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實(shí)根一個小于1,另一個大于1,求實(shí)數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實(shí)根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.38.在下列條件中,使M與不共線三點(diǎn)A、B、C,一定共面的是
[
]答案:C39.直線y=33x繞原點(diǎn)逆時針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個數(shù)是1.故為:140.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B41.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()
A.2
B.
C.3
D.
答案:B42.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A43.設(shè)m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D44.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實(shí)數(shù)m的取值范圍,使得:
(1)z是純虛數(shù);
(2)z是實(shí)數(shù);
(3)z對應(yīng)的點(diǎn)位于復(fù)平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實(shí)數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對應(yīng)的點(diǎn)坐標(biāo)為(lg(m2-2m-2),m2+3m+2)∴若該對應(yīng)點(diǎn)位于復(fù)平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)45.選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點(diǎn)F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點(diǎn)F坐標(biāo)為(-1,0).l是經(jīng)過點(diǎn)(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設(shè)點(diǎn)A,B在直線參數(shù)方程中對應(yīng)的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當(dāng)sinα=0時,|FA|?|FB|取最大值3;當(dāng)sinα=±1時,|FA|?|FB|取最小值94.…(10分)46.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()
A.大前提錯導(dǎo)致結(jié)論錯
B.小前提錯導(dǎo)致結(jié)論錯
C.推理形式錯導(dǎo)致結(jié)論錯
D.大前提和小前提錯都導(dǎo)致結(jié)論錯答案:A47.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:48.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B49.已知拋物線y=14x2,則過其焦點(diǎn)垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點(diǎn)F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點(diǎn)垂直于其對稱軸的直線方程為y=1故為y=1.50.在極坐標(biāo)中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()
A.
B.
C.
D.答案:A第2卷一.綜合題(共50題)1.在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.2.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(
)
A.
B.
C.
D.
答案:C3.下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的函數(shù)是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:對于A選項(xiàng),函數(shù)定義域是(0,+∞),故是非奇非偶函數(shù),不合題意,A選項(xiàng)不正確;對于B選項(xiàng),函數(shù)y=x3是一個奇函數(shù),故不是正確選項(xiàng);對于C選項(xiàng),函數(shù)的定義域是R,是偶函數(shù),且當(dāng)x∈(0,+∞)時,函數(shù)是增函數(shù),故在(0,1)上單調(diào)遞增,符合題意,故C選項(xiàng)正確;對于D選項(xiàng),函數(shù)y=cos|x|是偶函數(shù),在(0,1)上單調(diào)遞減,不合題意綜上知,C選項(xiàng)是正確選項(xiàng)故選C4.設(shè)雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()
A.5
B.或
C.或
D.答案:C5.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.6.等于()
A.
B.
C.
D.答案:B7.已知函數(shù)f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),則實(shí)數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,
x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.8.如果橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個焦點(diǎn)F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.9.設(shè)四邊形ABCD中,有且,則這個四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C10.圓柱的底面積為S,側(cè)面展開圖為正方形,那么這個圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設(shè)圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側(cè)面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.11.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.12.設(shè)a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時,函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時,a=22,故虛線所示的y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).13.已知=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C14.
以下四組向量中,互相平行的有()組.
A.一
B.二
C.三
D.四答案:D15.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時取等號,所以ax+by的最大值為3.故為:3.16.編程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE
n<=20s=s+tn=n+1t=t*nWENDPRINT
sEND17.(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.18.集合{0,1}的子集有()個.A.1個B.2個C.3個D.4個答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個,故選D.19.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.20.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點(diǎn)到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點(diǎn)到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.21.行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關(guān)系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗(yàn),有關(guān)試驗(yàn)數(shù)據(jù)如圖所示,其中,
(1)求n的值;
(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因?yàn)関≥0,所以0≤v≤60,即行駛的最大速度為60km/h。22.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.23.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實(shí)驗(yàn)結(jié)果都是相互獨(dú)立的,∴ξ~B(10,0.02),∴由二項(xiàng)分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19624.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.25.已知點(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點(diǎn)E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因?yàn)辄c(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點(diǎn)為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.26.棱長為2的正方體ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D27.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1
200人,女學(xué)生1
000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19228.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:329.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時兩條直線平行,當(dāng)k≠3時有2=-24-k≠3
所以
k=5故為:3或5.30.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個不小于1.31.設(shè)O是平行四邊形ABCD的兩條對角線AC與BD的交點(diǎn),對于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫序號).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.32.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()
A.相交
B.相切
C.相離
D.與k的取值有關(guān)答案:A33.(選做題)
設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實(shí)數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實(shí)數(shù)a的取值范圍為.34.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點(diǎn)為A1及A2令點(diǎn)O為連心線O1O2的中點(diǎn),過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.35.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a36.不等式﹣2x+1>0的解集是(
).答案:{x|x<}37.一位運(yùn)動員投擲鉛球的成績是14m,當(dāng)鉛球運(yùn)行的水平距離是6m時,達(dá)到最大高度4m.若鉛球運(yùn)行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D38.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.39.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B40.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:441.若一個底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B42.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10243.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B44.點(diǎn)O是△ABC內(nèi)一點(diǎn),若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A45.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時,試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時,2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時,猜想2n>n2-n+2,證明如下:當(dāng)n=4時,顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時,猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時,猜想2n>n2-n+2成立,∴當(dāng)n≥4時,an>n2+1.46.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點(diǎn)的個數(shù)為()
A.1
B.2
C.3
D.4答案:B47.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.48.以下命題:
①兩個共線向量是指在同一直線上的兩個向量;
②共線的兩個向量互相平行;
③共面的三個向量是指在同一平面內(nèi)的三個向量;
④共面的三個向量是指平行于同一平面的三個向量.
其中正確命題的序號是______.答案:解①根據(jù)共面與共線向量的定義可知①錯誤.②根據(jù)共線向量的定義可知②正確.③根據(jù)共面向量的定義可知③錯誤.④根據(jù)共面向量的定義可知④正確.故為:②④.49.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12450.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個球,A、B兩個袋子中的球數(shù)之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.第3卷一.綜合題(共50題)1.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:22.已知a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),且過點(diǎn)(1,2),O為原點(diǎn).求△OAB面積的最小值.答案:∵a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),∴直線l的方程為xa+yb=1,又直線l過點(diǎn)(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當(dāng)且僅當(dāng)1a=2b=12,即a=2且b=4時,等號成立.故△OAB面積的最小值是4.3.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點(diǎn)共線的充要條件是______.答案:由于AB,AC有公共點(diǎn)A,∴若A、B、C三點(diǎn)共線則AB與AC共線即存在一個實(shí)數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當(dāng)λμ=1時AB=1μa+b此時存在實(shí)數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點(diǎn)A,∴A、B、C三點(diǎn)共線故A、B、C三點(diǎn)共線的充要條件是λμ=14.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標(biāo)原點(diǎn)到直線AB的距離為32,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求B1M⊥B1N時,直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.5.
圓ρ=(cosθ+sinθ)的圓心的極坐標(biāo)是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A6.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)7.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.8.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;
(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.
…(14分)9.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點(diǎn)A、焦點(diǎn)F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為310.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.11.已知,棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則
A、以上四個圖形都是正確的
B、只有(2)(4)是正確的
C、只有(4)是錯誤的
D、只有(1)(2)是正確的答案:C12.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學(xué)歸納法證明(1)n=2時,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時成立.(2)假設(shè)n=k(k≥2)時成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當(dāng)n=k+1時,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時也成立.由(1)(2)得,原式成立.13.若有以下說法:
①相等向量的模相等;
②若a和b都是單位向量,則a=b;
③對于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,則a∥c.
其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因?yàn)閱挝幌蛄康哪5扔?,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A14.函數(shù)y=f(x)對任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時猜想成立.②假設(shè)n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).15.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A16.設(shè)向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
D.答案:A17.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____18.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C19.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.20.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)21.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.22.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2323.若直線的參數(shù)方程為,則直線的斜率為(
)A.B.C.D.答案:D24.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D25.教學(xué)大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()
A.10種
B.25種
C.52種
D.24種答案:D26.選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點(diǎn)F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點(diǎn)F坐標(biāo)為(-1,0).l是經(jīng)過點(diǎn)(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設(shè)點(diǎn)A,B在直線參數(shù)方程中對應(yīng)的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當(dāng)sinα=0時,|FA|?|FB|取最大值3;當(dāng)sinα=±1時,|FA|?|FB|取最小值94.…(10分)27.把下列直角坐標(biāo)方程或極坐標(biāo)方程進(jìn)行互化:
(1)ρ(2cos?-3sin?)+1=0
(2)x2+y2-4x=0.答案:(1)將原極坐標(biāo)方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標(biāo)方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標(biāo)方程為x2+y2-4x=0,可得極坐標(biāo)方程ρ2-4ρcosθ=0,即ρ=4cosθ.28.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B29.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.30.已知有如下兩段程序:
問:程序1運(yùn)行的結(jié)果為______.程序2運(yùn)行的結(jié)果為______.
答案:程序1是計數(shù)變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個程序計算的結(jié)果:sum=0;程序2計數(shù)變量i=21,開始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個程序計算的是sum=21.故為:0;21.31.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,32.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2333.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()
A.至少有一個黒球與都是紅球
B.至少有一個黒球與都是黒球
C.至少有一個黒球與至少有1個紅球
D.恰有1個黒球與恰有2個黒球答案:D34.拋擲兩個骰子,若至少有一個1點(diǎn)或一個6點(diǎn)出現(xiàn),就說這次試驗(yàn)失敗.那么,在3次試驗(yàn)中成功2次的概率為()
A.
B.
C.
D.答案:D35.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個焦點(diǎn),且橢圓的另外一個焦點(diǎn)在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C36.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.37.若復(fù)數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.38.在程序語言中,下列符號分別表示什么運(yùn)算*;\;∧;SQR;ABS?答案:“*”表示乘法運(yùn)算;“\”表示除法運(yùn)算;“∧”表示乘方運(yùn)算;“SQR()”表示求算術(shù)平方根運(yùn)算;“ABS()”表示求絕對值運(yùn)算.39.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:40.要從10名女生與5名男生中選出6名學(xué)生組成課外活動小組,則符合按性別比例分層抽樣的概率為()
A.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 誠信應(yīng)考的國旗下演講稿500字范文5篇
- 讀書班會主持稿5篇
- 節(jié)能環(huán)保設(shè)備技改項(xiàng)目可行性研究報告
- 砂石料生產(chǎn)線承包合作協(xié)議書
- 安全伴我同行演講稿5篇
- 智能家居維修工聘用合同
- 設(shè)計概論試題
- 市場的調(diào)研報告8篇
- 語文培訓(xùn)機(jī)構(gòu)講師聘用合同
- 醫(yī)療器械供貨施工合同范本
- 油氣地質(zhì)儲量計算及評價
- 【2023高血壓患者服藥依從性研究(論文)2800字】
- 村衛(wèi)生室2023年度績效考核評分細(xì)則(基本公共衛(wèi)生服務(wù))
- 寬帶接入合同
- 陰陽五行學(xué)說 PowerPoint 演示文稿 全面版【PPT課件】
- 測定總糖原始記錄
- 混凝土強(qiáng)度自動評定表格
- 大學(xué)生心理稿范文800字(優(yōu)選9篇)-1
- 北京科技大學(xué)EMC-VNX5300實(shí)施文檔
- 氨分解制氫安全技術(shù)要求3
- 2023年重慶市大渡口區(qū)春暉路街道陽光社區(qū)工作人員考試模擬試題及答案
評論
0/150
提交評論