版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣西職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:102.若點(diǎn)P分向量AB的比為34,則點(diǎn)A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.3.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(
)
A.
B.
C.
D.答案:A4.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對任意自然數(shù)n都滿足xn<xn+1,或者對任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數(shù)n都有1-xn2>0,從而對一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數(shù)n都有1-xn2<0,從而對一切自然數(shù)n都有xn>xn+15.四個(gè)森林防火觀察站A,B,C,D的坐標(biāo)依次為(5,0),(-5,0),(0,5),(0,-5),他們都發(fā)現(xiàn)某一地區(qū)有火訊.若A,B觀察到的距離相差為6,且離A近,C,D觀察到的距離相差也為6,且離C近.試求火訊點(diǎn)的坐標(biāo).答案:設(shè)火訊點(diǎn)的坐標(biāo)P(x,y),由于觀察到的距離相差為6,點(diǎn)P在雙曲線上,由于離A近,所以點(diǎn)P在雙曲線x29-y216=1(x≥3)上;由于離C近,所以點(diǎn)P在雙曲線Y29-X216=1(Y≥3)上;由這兩個(gè)方程解得:x=1277y=1277答:火訊點(diǎn)的坐標(biāo)為:(1277,1277).6.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()
A.
B.
C.
D.答案:D7.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()
A.散點(diǎn)圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A8.某班有40名學(xué)生,其中有15人是共青團(tuán)員.現(xiàn)將全班分成4個(gè)小組,第一組有學(xué)生10人,共青團(tuán)員4人,從該班任選一個(gè)學(xué)生代表.在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團(tuán)員共有15人,而第一小組有4人是共青團(tuán)員,故在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為415,故選A.9.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個(gè)年級的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A10.求證:答案:證明見解析解析:證明:此題采用了從第三項(xiàng)開始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開始,須根據(jù)具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。11.如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為與,圓的弦交圓于點(diǎn)(不在上),求證:為定值。
答案:見解析解析:考察圓的切線的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得12.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點(diǎn)D,與圓交于點(diǎn)E,連接AE,已知ED=3,BD=6,則線段AE的長=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3313.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).14.已知的單調(diào)區(qū)間;
(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進(jìn)行降次分項(xiàng)變形
,得,(2)首先證明任意事實(shí)上,而
.15.點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是______.答案:設(shè)圓上任意一點(diǎn)為A(x1,y1),AP中點(diǎn)為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=116.已知圓M的方程為:(x+3)2+y2=100及定點(diǎn)N(3,0),動(dòng)點(diǎn)P在圓M上運(yùn)動(dòng),線段PN的垂直平分線交圓M的半徑MP于Q點(diǎn),設(shè)點(diǎn)Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點(diǎn)Q的軌跡是M,N為焦點(diǎn),以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點(diǎn)Q的軌跡方程為:x225+y216=1故為:x225+y216=117.不等式的解集
.答案:;解析:略18.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對a1,a2,…,a2n+1中任意2n個(gè)數(shù),存在一種分法可將其分為兩組,每組n個(gè)數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當(dāng)a1,a2,…,a2n+1全部相等時(shí),從中任意2n個(gè)數(shù),將其分為兩組,每組n個(gè)數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時(shí),a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個(gè)整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個(gè)數(shù)中,將其分為兩組,每組n個(gè)數(shù),則a1在的那個(gè)組所有元素的和與另一個(gè)組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時(shí),a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.19.某簡單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.20.
若向量
=(3,2),=(0,-1),=(-1,2),則向量2-的坐標(biāo)坐標(biāo)是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D21.(a+b)6的展開式的二項(xiàng)式系數(shù)之和為______.答案:根據(jù)二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n所以(a+b)6展開式的二項(xiàng)式系數(shù)之和等于26=64故為:64.22.栽培甲、乙兩種果樹,先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.
(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;
(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.23.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會的一號、二號和三號場地的乒乓球裁判工作,每個(gè)場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B24.已知命題p:“有的實(shí)數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.25.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()
A.
B.
C.
D.
答案:B26.一支田徑隊(duì)有男運(yùn)動(dòng)員112人,女運(yùn)動(dòng)員84人,用分層抽樣的方法從全體男運(yùn)動(dòng)員中抽出了32人,則應(yīng)該從女運(yùn)動(dòng)員中抽出的人數(shù)為()
A.12
B.13
C.24
D.28答案:C27.4個(gè)人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計(jì)數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:928.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>329.如圖,割線PAB經(jīng)過圓心O,PC切圓O于點(diǎn)C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點(diǎn)C,∴根據(jù)切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設(shè)△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π30.從5名男學(xué)生、3名女學(xué)生中選3人參加某項(xiàng)知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個(gè)分類計(jì)數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時(shí),有C32C51=15種結(jié)果,當(dāng)包括兩男一女時(shí),有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.31.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.32.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.33.擲一顆均勻的骰子,若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點(diǎn)、出現(xiàn)偶數(shù)點(diǎn).若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點(diǎn)”,故為出現(xiàn)偶數(shù)點(diǎn).34.(1)把二進(jìn)制數(shù)化為十進(jìn)制數(shù);(2)把化為二進(jìn)制數(shù).答案:(1)45,(2)解析:(1)先把二進(jìn)制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進(jìn)制的運(yùn)算規(guī)則計(jì)算出結(jié)果;(2)根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..35.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個(gè)數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個(gè)數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.36.下列各式中錯(cuò)誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C37.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a(chǎn)不能被3整除答案:B38.已知橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.39.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C40.對變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B41.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A42.節(jié)假日時(shí),國人發(fā)手機(jī)短信問候親友已成為一種時(shí)尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問候的信息條數(shù)為()
A.27
B.37
C.38
D.8答案:A43.在極坐標(biāo)系中與圓ρ=4sinθ相切的一條直線的方程為()
A.ρcosθ=2
B.ρsinθ=2
C.ρ=4sin(θ+)
D.ρ=4sin(θ-)答案:A44.對于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.45.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A46.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)47.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1248.直線被圓x2+y2=9截得的弦長為(
)
A.
B.
C.
D.答案:B49.如圖給出的是計(jì)算1+13+15+…+12013的值的一個(gè)程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.50.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點(diǎn)的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點(diǎn)到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為15第2卷一.綜合題(共50題)1.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時(shí)單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.2.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C3.如圖是一個(gè)實(shí)物圖形,則它的左視圖大致為()A.
B.
C.
D.
答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實(shí)線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對角線的矩形,并且對角線在左視圖中為實(shí)線,故選D.4.參數(shù)方程(θ為參數(shù))表示的曲線為()
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分答案:D5.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:19106.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.7.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C8.設(shè)p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B9.關(guān)于斜二測畫法畫直觀圖說法不正確的是()
A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同
B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸
C.平行于坐標(biāo)軸的線段長度在直觀圖中仍然保持不變
D.斜二測坐標(biāo)系取的角可能是135°答案:C10.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.
(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.11.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項(xiàng)錯(cuò)誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,綜上,正確的選項(xiàng)有(3)、(4).12.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個(gè)順序結(jié)構(gòu).13.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()
A.α-
B.-α
C.α-
D.-α答案:D14.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.15.定點(diǎn)F1,F(xiàn)2,且|F1F2|=8,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=8,則點(diǎn)P的軌跡是()A.橢圓B.圓C.直線D.線段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當(dāng)點(diǎn)P不在直線F1F2上時(shí),根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當(dāng)點(diǎn)P在直線F1F2上時(shí),若點(diǎn)P在F1、F2兩點(diǎn)之外時(shí),可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點(diǎn)P在F1、F2兩點(diǎn)之間(或與F1、F2重合)時(shí),可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點(diǎn)P在直線F1F2上且在F1、F2兩點(diǎn)之間或與F1、F2重合,故點(diǎn)P的軌跡是線段F1F2.故選:D16.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()
A.簡單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B17.關(guān)于x的方程x2+4x+k=0有一個(gè)根為-2+3i(i為虛數(shù)單位),則實(shí)數(shù)k=______.答案:由韋達(dá)定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1318.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點(diǎn)可以構(gòu)成直角三角形B.A,B,C三點(diǎn)可以構(gòu)成銳角三角形C.A,B,C三點(diǎn)可以構(gòu)成鈍角三角形D.A,B,C三點(diǎn)不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點(diǎn)可以構(gòu)成直角三角形,故選A.19.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D20.若|a|=3、|b|=4,且a⊥b,則|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故為:5.21.下列給變量賦值的語句正確的是()
A.5=a
B.a(chǎn)+2=a
C.a(chǎn)=b=4
D.a(chǎn)=2*a答案:D22.已知△A′B′C′是水平放置的邊長為a的正三角形△ABC的斜二測平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長為a,故面積為34a2,而原圖和直觀圖面積之間的關(guān)系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.23.拋擲兩顆骰子,所得點(diǎn)數(shù)之和為ξ,那么ξ=4表示的隨機(jī)試驗(yàn)結(jié)果是()
A.一顆是3點(diǎn),一顆是1點(diǎn)
B.兩顆都是2點(diǎn)
C.兩顆都是4點(diǎn)
D.一顆是3點(diǎn),一顆是1點(diǎn)或兩顆都是2點(diǎn)答案:D24.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時(shí),截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時(shí),截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓25.(x3+1xx)10的展開式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.26.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B27.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C28.已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.
(?。┣笞C:直線AB恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點(diǎn)A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點(diǎn),∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點(diǎn)為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(diǎn)(0,2)(10分)(ⅱ)由(?。┲狝B中點(diǎn)N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時(shí),則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點(diǎn)M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時(shí)E(±2,-2),當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)E綜上可得:滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)29.已知平面向量a=(0,1),b=(x,y),若a⊥b,則實(shí)數(shù)y=______.答案:由題意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故為030.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點(diǎn)重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點(diǎn)重合.故選C.31.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序空白框圖,將空白處補(bǔ)上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序,由于第一次執(zhí)行循環(huán)時(shí)的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計(jì)數(shù)變量i為2,步長為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.32.某學(xué)校為了解高一男生的百米成績,隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.
答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.33.下圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的(
)答案:A34.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學(xué),老師打算組織同學(xué)們集體去游泳,除需購買若干張游泳卡外,每次游泳還需包一輛汽車,無論乘坐多少名同學(xué),每次的包車費(fèi)均為40元.
若使每個(gè)同學(xué)游8次,每人最少應(yīng)交多少元錢?答案:設(shè)買x張游泳卡,總開支為y元,則每批去x名同學(xué),共需去48×8x=384x批,總開支又分為:①買卡所需費(fèi)用240x;②包車所需費(fèi)用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當(dāng)且僅當(dāng)x=64x時(shí),即x=8時(shí)取等號.∴當(dāng)x=8時(shí),總開支y的最大值為3840元,此時(shí)每人最少應(yīng)交384048=80(元).答:若使每個(gè)同學(xué)游8次,每人最少應(yīng)交80元錢.35.點(diǎn)M的直角坐標(biāo)是(,-1),在ρ≥0,0≤θ<2π的條件下,它的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(,)
D.(,)答案:A36.已知求證:答案:證明見解析解析:證明:37.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).38.若隨機(jī)變量ξ~N(2,9),則隨機(jī)變量ξ的數(shù)學(xué)期望c=()
A.4
B.3
C.2
D.1答案:C39.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項(xiàng)式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C40.在輸入語句中,若同時(shí)輸入多個(gè)變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A41.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)42.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C43.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是
______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).44.已知函數(shù)f(x)對其定義域內(nèi)任意兩個(gè)實(shí)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn).答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個(gè)交點(diǎn),…(2分)(1)若f(x)的圖象與x軸有兩個(gè)交點(diǎn),不妨設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實(shí)數(shù)x1,x2,當(dāng)x1<x2時(shí),有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)交點(diǎn).…(11分)(2)若f(x)的圖象與x軸交點(diǎn)多于兩個(gè),可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)以上交點(diǎn).綜上,函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn)…(14分)45.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個(gè)向量首尾相接后,構(gòu)成一個(gè)三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:646.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,則的位置關(guān)系為()
A.相切
B.相離
C.相交
D.內(nèi)含答案:C47.如圖,在四棱臺ABCD-A1B1C1D1中,下底ABCD是邊長為2的正方形,上底A1B1C1D1是邊長為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求證:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D為原點(diǎn),以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標(biāo)系D-xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)證明:設(shè)AC∩BD=E,連接D1、E,則有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB?平面D1AC,D1E?平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),設(shè)n=(x,y,z)為平面AB1D1的法向量,n?B1D1=x+y=0,n?D1A=2x-2z=0.于是令x=1,則y=-1,z=1.則n=(1,-1,1)…(8分)同理可以求得平面D1AC的一個(gè)法向量m=(1,1,1),…(10分)cos<m,n>=m?n|m||n|=13.∴二面角B1-AD1-C的余弦值為13.…(12分)48.已知隨機(jī)變量ξ~N(3,22),若ξ=2η+3,則Dη=()
A.0
B.1
C.2
D.4答案:B49.某航空公司經(jīng)營A,B,C,D這四個(gè)城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價(jià)格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價(jià)格與往返城市間的直線距離成正比,則BD間直線距離的票價(jià)為(設(shè)這四個(gè)城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A50.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為x1(x1>0),過點(diǎn)A作拋物線C的切線l1交x軸于點(diǎn)D,交y軸于點(diǎn)Q,交直線l:y=p2于點(diǎn)M,當(dāng)|FD|=2時(shí),∠AFD=60°.
(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;
(2)若B位于y軸左側(cè)的拋物線C上,過點(diǎn)B作拋物線C的切線l2交直線l1于點(diǎn)P,交直線l于點(diǎn)N,求△PMN面積的最小值,并求取到最小值時(shí)的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點(diǎn)A,Q,D的坐標(biāo)可知:D為線段AQ的中點(diǎn),∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點(diǎn)P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點(diǎn)M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點(diǎn)P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時(shí),S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時(shí),S(t)單調(diào)遞增,所以當(dāng)t=33時(shí),S取到最小值為1639,此時(shí)b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時(shí)的x1值為233.第3卷一.綜合題(共50題)1.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-2122.(幾何證明選做題)若A,B,C是⊙O上三點(diǎn),PC切⊙O于點(diǎn)C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為______.答案:∵PC切⊙O于點(diǎn)C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°3.如圖程序輸出的結(jié)果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B4.△ABC中,∠A外角的平分線與此三角形外接圓相交于P,求證:BP=CP.
答案:證明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.5.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個(gè)滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個(gè)滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=16.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D7.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()
A.
B.
C.2
D.答案:B8.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)9.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C10.曲線x=sinθy=sin2θ(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數(shù)),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.11.用反證法證明命題“如果a>b>0,那么a2>b2”時(shí),假設(shè)的內(nèi)容應(yīng)是()
A.a(chǎn)2=b2
B.a(chǎn)2<b2
C.a(chǎn)2≤b2
D.a(chǎn)2<b2,且a2=b2答案:C12.在平行四邊形ABCD中,AC與DB交于點(diǎn)O,E是線段OD的中點(diǎn),AE延長線與CD交于F.若AC=a,BD=b,則AF=()A.14a+12bB.23a+13bC.12a+14bD.13a+23b答案:∵由題意可得△DEF∽△BEA,∴DEEB=DFAB=13,再由AB=CD可得DFDC=13,∴DFFC=12.作FG平行BD交AC于點(diǎn)G,∴FGDO=CGCO=23,∴GF=23OD=13BD=13b.∵AG=AO+OG=AO+13OC=12AC+16AC=23AC=23a,∴AF=AG+GF=23a+13b,故選B.13.在500個(gè)人身上試驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把一年中的記錄與另外500個(gè)未用血清的人作比較,結(jié)果如下:
未感冒
感冒
合計(jì)
試驗(yàn)過
252
248
500
未用過
224
276
500
合計(jì)
476
524
1000
根據(jù)上表數(shù)據(jù),算得Χ2=3.14.以下推斷正確的是()
A.血清試驗(yàn)與否和預(yù)防感冒有關(guān)
B.血清試驗(yàn)與否和預(yù)防感冒無關(guān)
C.通過是否進(jìn)行血清試驗(yàn)可以預(yù)測是否得感冒
D.通過是否得感冒可以推斷是否進(jìn)行了血清試驗(yàn)答案:A14.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標(biāo)為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A15.已知定點(diǎn)A(12.0),M為曲線x=6+2cosθy=2sinθ上的動(dòng)點(diǎn),若AP=2AM,試求動(dòng)點(diǎn)P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動(dòng)點(diǎn)(x,y)由AP=2AM,即M為線段AP的中點(diǎn)故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動(dòng)點(diǎn)P的軌跡C的方程為x2+y2=1616.從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點(diǎn).求證:ACBC=ADBD.
答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.17.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C18.每一噸鑄鐵成本y
(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當(dāng)x增加一個(gè)單位時(shí),對應(yīng)的y要增加8個(gè)單位,這里是平均增加8個(gè)單位,故選C.19.一個(gè)樣本a,99,b,101,c中五個(gè)數(shù)恰成等差數(shù)列,則這個(gè)樣本的極差與標(biāo)準(zhǔn)差分別為(
)。答案:4;20.向面積為S的△ABC內(nèi)任投一點(diǎn)P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因?yàn)殛幱安糠值拿娣e是整個(gè)三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.21.下列在曲線上的點(diǎn)是(
)
A.
B.
C.
D.答案:B22.已知函數(shù)f(x)對其定義域內(nèi)任意兩個(gè)實(shí)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn).答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個(gè)交點(diǎn),…(2分)(1)若f(x)的圖象與x軸有兩個(gè)交點(diǎn),不妨設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實(shí)數(shù)x1,x2,當(dāng)x1<x2時(shí),有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)交點(diǎn).…(11分)(2)若f(x)的圖象與x軸交點(diǎn)多于兩個(gè),可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)以上交點(diǎn).綜上,函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn)…(14分)23.在空間直角坐標(biāo)系中,已知兩點(diǎn)P1(-1,3,5),P2(2,4,-3),則|P1P2|=()
A.
B.3
C.
D.答案:A24.已知方程(1+k)x2-(1-k)y2=1表示焦點(diǎn)在x軸上的雙曲線,則k的取值范圍為(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A25.以橢圓x23+y2=1的右焦點(diǎn)為焦點(diǎn),且頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為______.答案:∵橢圓x23+y2=1的右焦點(diǎn)F(2,0),∴以F(2,0)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為y2=42x.故為:y2=42x.26.對某種電子元件進(jìn)行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時(shí)的電子元件的數(shù)量與壽命在300~600小時(shí)的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時(shí)的電子元件對應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時(shí)的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時(shí)的電子元件對應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時(shí)子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時(shí)的電子元件的數(shù)量與壽命在300~600小時(shí)的電子元件的數(shù)量的比大約是0.2:0.8=14故選C27.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()
A.(3,4,5)
B.(0,1,2)
C.(1,0,2)
D.(0,2,1)答案:D28.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個(gè)年級的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A29.過點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.30.方程(x2-9)2(x2-y2)2=0表示的圖形是()
A.4個(gè)點(diǎn)
B.2個(gè)點(diǎn)
C.1個(gè)點(diǎn)
D.四條直線答案:D31.如圖所示,已知A、B、C三點(diǎn)不共線,O為平面ABC外的一點(diǎn),若點(diǎn)M滿足
(1)判斷三個(gè)向量是否共面;
(2)判斷點(diǎn)M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個(gè)向量的基線又有公共點(diǎn)M,∴M、A、B、C共面,即點(diǎn)M在平面ABC內(nèi),32.一直線傾斜角的正切值為34,且過點(diǎn)P(1,2),則直線方程為______.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.33.函數(shù)y=2x的值域?yàn)開_____.答案:因?yàn)椋簒≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域?yàn)椋篬1,+∞).故為:[1,+∞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省南京市(2024年-2025年小學(xué)六年級語文)部編版小升初模擬(下學(xué)期)試卷及答案
- 《釵頭鳳陸游》課件
- 《上課影響價(jià)格的因素》課件
- 2024年綠色辦公裝修標(biāo)準(zhǔn)合同3篇
- 2024年貨車駕駛員辭職和解約合同
- 2024年物業(yè)公司維修工派遣協(xié)議
- 2024年茶具展會參展合同(展位面積與費(fèi)用)
- 2024年版連鎖加盟合同(餐飲業(yè))
- 2024年版權(quán)許可使用合同(獨(dú)家授權(quán))
- 2024張家港化工園區(qū)危險(xiǎn)品運(yùn)輸合同
- 部分預(yù)應(yīng)力混凝土A類梁課程設(shè)計(jì)
- 企業(yè)節(jié)前安全教育培訓(xùn)
- 小學(xué)體育知識樹PPT課件(帶內(nèi)容)
- 全球試驗(yàn)室儀器耗材國際品牌簡介
- 鋼抱箍+工字鋼梁在蓋梁施工中的應(yīng)用
- 消防聯(lián)動(dòng)調(diào)試記錄(2)
- 追求“真實(shí)、樸實(shí)、扎實(shí)”的語文課堂
- 螺桿空壓機(jī)操作規(guī)程完整
- 702班素質(zhì)評價(jià)觀測學(xué)生填寫完成情況檢查
- 大學(xué)學(xué)院成績單(模板)
- 奧林燃燒器說明書(GP130-150H)
評論
0/150
提交評論