2023年廣州體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年廣州體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年廣州體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年廣州體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年廣州體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣州體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.在區(qū)間[-1,1]上任取兩個(gè)數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[

]A.

B.

C.

D.答案:A2.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為103.已知圓O的兩弦AB和CD延長(zhǎng)相交于E,過(guò)E點(diǎn)引EF∥CB交AD的延長(zhǎng)線于F,過(guò)F點(diǎn)作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.4.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點(diǎn)C、M,與AC交于N,見(jiàn)圖中非陰影部分),則該半圓的半徑長(zhǎng)為_(kāi)_____.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.5.若回歸直線方程中的回歸系數(shù)b=0時(shí),則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計(jì)算公式中,與相關(guān)指數(shù)的計(jì)算公式中,它們的分子相同,故為:0.6.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時(shí),s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時(shí),s=cost+isint=1則f(s)=1+s+s2+…sn=n+17.在下列四個(gè)命題中,正確的共有()

①坐標(biāo)平面內(nèi)的任何一條直線均有傾斜角和斜率;

②直線的傾斜角的取值范圍是[0,π];

③若一條直線的斜率為tanα,則此直線的傾斜角為α;

④若一條直線的傾斜角為α,則此直線的斜率為tanα.

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:A8.已知|OA|=1,|OB|=3,OA?OB=0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12

|OC

|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:39.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域?yàn)閧0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域?yàn)閧0,1};有理數(shù)和無(wú)理數(shù)正負(fù)關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)D(t)的圖象關(guān)于y軸對(duì)稱,所以函數(shù)是偶函數(shù);對(duì)于不同的有理數(shù)x對(duì)應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因?yàn)槿稳∫粋€(gè)非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無(wú)理數(shù)為無(wú)理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項(xiàng)C不正確.故選C.10.為了了解某地母親身高x與女兒身高y的相關(guān)關(guān)系,隨機(jī)測(cè)得10對(duì)母女的身高如下表所示:

母親身高x(cm)159160160163159154159158159157女兒身高y(cm)158159160161161155162157162156計(jì)算x與y的相關(guān)系數(shù)r=0.71,通過(guò)查表得r的臨界值r0.05=______,從而有______的把握認(rèn)為x與y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過(guò)計(jì)算得到回歸直線方程為y=35.2+0.78x,當(dāng)母親身高每增加1cm時(shí),女兒身高_(dá)_____,當(dāng)母親的身高為161cm時(shí),估計(jì)女兒的身高為_(kāi)_____cm.答案:查對(duì)臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=35.2+0.78x,因此,當(dāng)母親身高每增加1cm時(shí),女兒身高0.78,當(dāng)x=161cm時(shí),y=35.2+0.78x=35.2+0.78×161≈161cm故為:0.632,95%,0.78,161cm.11.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()

A.內(nèi)含

B.內(nèi)切

C.相交

D.外切答案:A12.若a>0,b<0,直線y=ax+b的圖象可能是()

A.

B.

C.

D.

答案:C13.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個(gè)數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個(gè)數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.14.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因?yàn)閨b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因?yàn)?≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:215.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200616.若p、q是兩個(gè)簡(jiǎn)單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D17.不等式ax2+bx+2>0的解集是(-,),則a+b的值是()

A.10

B.-10

C.14

D.-14答案:D18.Rt△ABC的直角邊AB在平面α內(nèi),頂點(diǎn)C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B19.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D20.利用斜二側(cè)畫(huà)法畫(huà)直觀圖時(shí),①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是

______.答案:由斜二側(cè)直觀圖的畫(huà)法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應(yīng)該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②21.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()

A.

B.

C.或

D.或答案:C22.用秦九韶算法求多項(xiàng)式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫(xiě),然后由內(nèi)到外逐次計(jì)算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫(xiě),然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.23.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為_(kāi)_____.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.24.動(dòng)點(diǎn)P到直線x+2=0的距離減去它到M(1,0)的距離之差等于1,則動(dòng)點(diǎn)P的軌跡是______.答案:將直線x+2=0向右平移1個(gè)長(zhǎng)度單位得到直線x+1=0,則動(dòng)點(diǎn)到直線x+1=0的距離等于它到M(1,0)的距離,由拋物線定義知:點(diǎn)P的軌跡是以點(diǎn)M為焦點(diǎn)的拋物線.:以點(diǎn)M為焦點(diǎn)以x=-1為準(zhǔn)線的拋物線.25.如圖把橢圓x225+y216=1的長(zhǎng)軸AB分成8分,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則|P1F|+|P2F|+…+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長(zhǎng)軸AB分成8等份,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則根據(jù)橢圓的對(duì)稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對(duì)的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.26.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042927.雙曲線x2n-y2=1(n>1)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為_(kāi)_____.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.28.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長(zhǎng)分別為|a|、|b|、|c|的三角形()

A.是銳角三角形

B.是直角三角形

C.是鈍角三角形

D.不存在答案:B29.如圖是一個(gè)實(shí)物圖形,則它的左視圖大致為()A.

B.

C.

D.

答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實(shí)線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對(duì)角線的矩形,并且對(duì)角線在左視圖中為實(shí)線,故選D.30.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()

A.8

B.11

C.16

D.10答案:A31.如圖在長(zhǎng)方形ABCD中,AB=,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為()

A.

B.

C.

D.答案:B32.O、A、B、C為空間四個(gè)點(diǎn),又為空間的一個(gè)基底,則()

A.O、A、B、C四點(diǎn)共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D33.一個(gè)多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長(zhǎng)為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A34.在坐標(biāo)平面內(nèi),與點(diǎn)A(1,2)距離為1,且與點(diǎn)B(3,1)距離為2的直線共有()A.1條B.2條C.3條D.4條答案:分別以A、B為圓心,以1、2為半徑作圓,兩圓的公切線有兩條,即為所求.故選B.35.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B36.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點(diǎn)重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點(diǎn)重合.故選C.37.一圓形紙片的圓心為O點(diǎn),Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn),把紙片折疊使點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于P點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是______.

①圓

②雙曲線

③拋物線

④橢圓

⑤線段

⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點(diǎn)P到兩個(gè)定點(diǎn)O、Q的距離之和等于定長(zhǎng)R(R>|OQ|),由橢圓的定義可得,點(diǎn)P的軌跡為橢圓,故為④.38.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實(shí)數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實(shí)數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-239.盒子中有10張獎(jiǎng)券,其中3張有獎(jiǎng),甲、乙先后從中各抽取1張(不放回),記“甲中獎(jiǎng)”為A,“乙中獎(jiǎng)”為B.

(1)求P(A),P(B),P(AB),P(A|B);

(2)A與B是否相互獨(dú)立,說(shuō)明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.40.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()

A.1

B.2

C.3

D.5

答案:D41.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,則的位置關(guān)系為()

A.相切

B.相離

C.相交

D.內(nèi)含答案:C42.函數(shù)y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因?yàn)楹瘮?shù)y=5x,x∈N+的定義域?yàn)檎麛?shù)集N+,所以當(dāng)自變量x取1,2,3,4,…時(shí),其相應(yīng)的函數(shù)值y依次是5,52,53,54,….因此,函數(shù)y=5x,x∈N+的值域是{5,52,53,54,…}.故選D.43.求證:若圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則從對(duì)角線交點(diǎn)到一邊中點(diǎn)的線段長(zhǎng)等于圓心到該邊對(duì)邊的距離.答案:以兩條對(duì)角線的交點(diǎn)為原點(diǎn)O、對(duì)角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.44.設(shè)

是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D45.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B46.已知正方形ABCD的邊長(zhǎng)為1,=,=,=,則的模等于(

A.0

B.2+

C.

D.2答案:D47.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)數(shù)根的絕對(duì)值比正數(shù)根大,那么實(shí)數(shù)m的取值范圍是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A48.一個(gè)正三棱錐的底面邊長(zhǎng)等于一個(gè)球的半徑,該正三棱錐的高等于這個(gè)球的直徑,則球的體積與正三棱錐體積的比值為()

A.

B.

C.

D.答案:A49.過(guò)直線x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示:直線PA和PB為過(guò)點(diǎn)P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)50.在輸入語(yǔ)句中,若同時(shí)輸入多個(gè)變量,則變量之間的分隔符號(hào)是()

A.逗號(hào)

B.空格

C.分號(hào)

D.頓號(hào)答案:A第2卷一.綜合題(共50題)1.從5名男學(xué)生、3名女學(xué)生中選3人參加某項(xiàng)知識(shí)對(duì)抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個(gè)分類計(jì)數(shù)問(wèn)題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時(shí),有C32C51=15種結(jié)果,當(dāng)包括兩男一女時(shí),有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.2.圖為一個(gè)幾何體的三視國(guó)科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個(gè)正三角形,其邊長(zhǎng)為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C3.已知點(diǎn)A(-3,8),B(2,4),若y軸上的點(diǎn)P滿足PA的斜率是PB斜率的2倍,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)P(0,y),則∵點(diǎn)P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)4.{,,}=是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C5.已知f(10x)=x,則f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故為:lg56.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B7.已知A(1,0).B(7,8),若點(diǎn)A和點(diǎn)B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長(zhǎng)度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.8.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長(zhǎng)是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.9.集合A={3,2a},B={a,b},若A∩B={2},則A∪B=______.答案:根據(jù)題意,若A∩B={2},則2∈A,2∈B,而已知A={3,2a},則必有2a=2,故a=1,又由2∈B,且a=1則b=2,故A∪B={1,2,3},故為{1,2,3}.10.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()

A.相交

B.相切

C.相離

D.與k的取值有關(guān)答案:A11.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點(diǎn)A看點(diǎn)B的仰角與從點(diǎn)B看點(diǎn)A的俯角互為內(nèi)錯(cuò)角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.12.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開(kāi)式中x的系數(shù)為13,則x2的系數(shù)為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開(kāi)式中x的系數(shù)為2Cm1=2m,(1+3x)n的展開(kāi)式中x的系數(shù)為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開(kāi)式中的x2系數(shù)為22Cm2,(1+3x)n的展開(kāi)式中的x2系數(shù)為32Cn2∴當(dāng)n=1m=5時(shí),x2的系數(shù)為22Cm2+32Cn2=40當(dāng)n=3m=2時(shí),x2的系數(shù)為22Cm2+32Cn2=31故選C.13.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C14.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無(wú)法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.15.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學(xué)歸納法證明f(2n)>n2時(shí),f(2k+1)-f(2k)等于______.答案:因?yàn)榧僭O(shè)n=k時(shí),f(2k)=1+12+13+…+12k,當(dāng)n=k+1時(shí),f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+116.“所有10的倍數(shù)都是5的倍數(shù),某數(shù)是10的倍數(shù),則該數(shù)是5的倍數(shù),”上述推理()

A.完全正確

B.推理形式不正確

C.錯(cuò)誤,因?yàn)榇笮∏疤岵灰恢?/p>

D.錯(cuò)誤,因?yàn)榇笄疤徨e(cuò)誤答案:A17.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實(shí)數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為218.若f(x)=x2,則對(duì)任意實(shí)數(shù)x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A19.一個(gè)十二面體共有8個(gè)頂點(diǎn),其中2個(gè)頂點(diǎn)處各有6條棱,其它頂點(diǎn)處都有相同的棱,則其它頂點(diǎn)處的棱數(shù)為_(kāi)_____.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點(diǎn)處的棱數(shù)為4故為420.有五條線段長(zhǎng)度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個(gè)三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.21.若方程x2+y2+kx+2y+k2-11=0表示的曲線是圓,則實(shí)數(shù)k的取值范圍是______.如果過(guò)點(diǎn)(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則實(shí)數(shù)k的取值范圍是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲線是圓,∴48-3k24>0,解得-4<k<4.圓x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果過(guò)點(diǎn)(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則點(diǎn)(1,2)一定在圓x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故為:(-4,4),(-4,-2)∪(1,4).22.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表

廣告費(fèi)用x(萬(wàn)元)4235銷售額y(萬(wàn)元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點(diǎn)代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.23.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故選A.24.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值時(shí)兩圓外切?

(2)m取何值時(shí)兩圓內(nèi)切?

(3)當(dāng)m=45時(shí),求兩圓的公共弦所在直線的方程和公共弦的長(zhǎng).答案:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個(gè)圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長(zhǎng)為211-4=27.25.如圖:已知圓上的弧

AC=

BD,過(guò)C點(diǎn)的圓的切線與BA的延長(zhǎng)線交于E點(diǎn),證明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因?yàn)锳C=BD,所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)26.在極坐標(biāo)系中,若點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),則ρ0=______.答案:∵點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.27.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A28.離心率e=23,短軸長(zhǎng)為85的橢圓標(biāo)準(zhǔn)方程為_(kāi)_____.答案:離心率e=23,短軸長(zhǎng)為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標(biāo)準(zhǔn)方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=129.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號(hào)的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡(jiǎn)單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D30.若a>0,b<0,直線y=ax+b的圖象可能是()

A.

B.

C.

D.

答案:C31.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個(gè)方向向量為()

A.(1,2,3)

B.(1,3,2)

C.(2,1,3)

D.(3,2,1)答案:A32.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長(zhǎng)為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對(duì)角線的長(zhǎng)就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.33.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個(gè)數(shù)為()

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)答案:C34.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點(diǎn)P(m,2)在曲線C上,則m=______.答案:因?yàn)榍€C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點(diǎn)P(m,2)在曲線C上,所以m=4×4=16.故為:16.35.下列給出的輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句

(1)輸出語(yǔ)句INPUT

a;b;c

(2)輸入語(yǔ)句INPUT

x=3

(3)賦值語(yǔ)句3=B

(4)賦值語(yǔ)句A=B=2

則其中正確的個(gè)數(shù)是()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:A36.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個(gè)數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個(gè)數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.37.下列4個(gè)命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確38.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B39.在△ABC中,DE∥BC,DE將△ABC分成面積相等的兩部分,那么DE:BC=()

A.1:2

B.1:3

C.

D.1:1答案:C40.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個(gè)大于1,即原命題得證.41.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C42.把下列命題寫(xiě)成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對(duì)應(yīng)角相等;

(2)當(dāng)a>1時(shí),函數(shù)y=ax是增函數(shù).答案:(1)若兩個(gè)三角形相似,則它們的對(duì)應(yīng)角相等.條件p:三角形相似,結(jié)論q:對(duì)應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).43.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).44.下列各組幾何體中是多面體的一組是(

A.三棱柱、四棱臺(tái)、球、圓錐

B.三棱柱、四棱臺(tái)、正方體、圓臺(tái)

C.三棱柱、四棱臺(tái)、正方體、六棱錐

D.圓錐、圓臺(tái)、球、半球答案:C45.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)數(shù)根的絕對(duì)值比正數(shù)根大,那么實(shí)數(shù)m的取值范圍是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A46.等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的面積為

______.答案:等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,所以梯形的高為:1,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的高為:12sin45°=24所以直觀圖的面積為:12×(1+3)×24=22故為:2247.將一枚骰子連續(xù)拋擲600次,請(qǐng)你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)的6個(gè)點(diǎn)數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計(jì)每一個(gè)嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點(diǎn)數(shù)大于2的大約有400次,故為:400.48.有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()

A.大前提錯(cuò)誤

B.小前提錯(cuò)誤

C.推理形式錯(cuò)誤

D.結(jié)論正確答案:A49.已知圓C:x2+y2-4y-6y+12=0,求:

(1)過(guò)點(diǎn)A(3,5)的圓的切線方程;

(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過(guò)點(diǎn)A(3,5)的直線?的方程為y-5=k(x-3).因?yàn)橹本€?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過(guò)圓外一點(diǎn)A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因?yàn)樵c(diǎn)在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.50.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為_(kāi)_____.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時(shí),設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時(shí),P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33

或12第3卷一.綜合題(共50題)1.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i2.實(shí)數(shù)變量m,n滿足m2+n2=1,則坐標(biāo)(m+n,mn)表示的點(diǎn)的軌跡是()

A.拋物線

B.橢圓

C.雙曲線的一支

D.拋物線的一部分答案:A3.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為_(kāi)_____.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|

|n|=231×22+1+(23)2=27.故為27.4.設(shè)a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.5.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D6.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對(duì)事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對(duì)立事件的有______(只填序號(hào)).答案:對(duì)于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時(shí)發(fā)生,而且它們的并事件是必然事件,故它們是對(duì)立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.故為③.7.下列函數(shù)圖象中,正確的是()

A.

B.

C.

D.

答案:C8.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點(diǎn)的向量

B.等長(zhǎng)的向量

C.共面向量

D.不共面向量答案:C9.隋機(jī)變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C10.如右圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個(gè)分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41

C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41

C12

C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.11.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:

表1:

x123f(x)231表2:

x123g(x)321則方程g[f(x)]=x的解集為_(kāi)_____.答案:由題意得,當(dāng)x=1時(shí),g[f(1)]=g[2]=2不滿足方程;當(dāng)x=2時(shí),g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}12.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D13.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D14.若a1-i=1-bi,其中a,b都是實(shí)數(shù),i是虛數(shù)單位,則|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故為:5.15.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.16.經(jīng)過(guò)兩點(diǎn)A(-3,5),B(1,1

)的直線傾斜角為_(kāi)_____.答案:因?yàn)閮牲c(diǎn)A(-3,5),B(1,1

)的直線的斜率為k=1-51-(-3)=-1所以直線的傾斜角為:135°.故為:135°.17.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C18.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長(zhǎng).答案:曲線C的極坐標(biāo)方程是ρ=4cosθ化為直角坐標(biāo)方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長(zhǎng)24-12=14.19.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).

(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);

(Ⅱ)估計(jì)被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計(jì)被調(diào)查者月收入的平均數(shù)為240020.如圖,O是正方形ABCD對(duì)角線的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:

(1)與AO相等的向量有

______;

(2)寫(xiě)出與AO共線的向量有

______;

(3)寫(xiě)出與AO的模相等的向量有

______;

(4)向量AO與CO是否相等?答

______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等21.根據(jù)下列條件,求圓的方程:

(1)過(guò)點(diǎn)A(1,1),B(-1,3)且面積最?。?/p>

(2)圓心在直線2x-y-7=0上且與y軸交于點(diǎn)A(0,-4),B(0,-2).答案:(1)過(guò)A、B兩點(diǎn)且面積最小的圓就是以線段AB為直徑的圓,∴圓心坐標(biāo)為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點(diǎn)A(0,-4),B(0,-2)可知,圓心在直線y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標(biāo)為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.22.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因?yàn)樗倪呅蔚膬?nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.23.一直線傾斜角的正切值為34,且過(guò)點(diǎn)P(1,2),則直線方程為_(kāi)_____.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過(guò)點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.24.已知A、B、C三點(diǎn)不共線,O是平面ABC外的任一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說(shuō)明M、A、B、C共面,可以判斷A、B、C都是錯(cuò)誤的,則D正確.故選D.25.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.26.已知點(diǎn)P在曲線C1:x216-y29=1上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識(shí)可知:C1x216-y29=1的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點(diǎn)正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C27.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.

(Ⅰ)分別求ξ和η的期望;

(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)28.若不等式的解集,則實(shí)數(shù)=___________.答案:-429.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為_(kāi)_____.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).30.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.31.已知f(x)是定義域?yàn)檎麛?shù)集的函數(shù),對(duì)于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對(duì)于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對(duì)于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對(duì)于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對(duì)于任意的k≥4,均有f(k)≥k2成立答案:對(duì)A,當(dāng)k=1或2時(shí),不一定有f(k)≥k2成立;對(duì)B,應(yīng)有f(k)≥k2成立;對(duì)C,只能得出:對(duì)于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對(duì)D,∵f(4)=25≥16,∴對(duì)于任意的k≥4,均有f(k)≥k2成立.故選D32.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(

)g。答案:161.8或138.233.點(diǎn)(1,2)到原點(diǎn)的距離為()

A.1

B.5

C.

D.2答案:C34.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()

A.=

B.與同向

C.∥

D.與有相同的位置向量答案:C35.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號(hào)成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個(gè)式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號(hào)當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)成立.36.在(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:2537.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為_(kāi)_____.答案:設(shè)C(x,y,z),則AC+BC=(2x+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論