版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年天津渤海職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.探測某片森林知道,可采伐的木材有10萬立方米.設(shè)森林可采伐木材的年平均增長率為8%,則經(jīng)過______年,可采伐的木材增加到40萬立方米.答案:設(shè)經(jīng)過n年可采伐本材達(dá)到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過19年,可采伐的木材增加到40萬立方米故為192.函數(shù)f(x)=-2x+1(x∈[-2,2])的最小、最大值分別為()A.3,5B.-3,5C.1,5D.5,-3答案:因為f(x)=-2x+1(x∈[-2,2])是單調(diào)遞減函數(shù),所以當(dāng)x=2時,函數(shù)的最小值為-3.當(dāng)x=-2時,函數(shù)的最大值為5.故選B.3.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.4.已知點M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點的距離,它的最小值轉(zhuǎn)化為原點到直線3x+4y=15的距離:d=155=3.故為3.5.在△ABC中,已知角A,B,C所對的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關(guān)系是______.答案:依題意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即兩直線方程中x的系數(shù)之比與y的系數(shù)之比相等,∴兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.故為:平行或重合.6.命題“若ab=0,則a、b中至少有一個為零”的逆否命題是
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.7.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時,a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B8.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運用時要結(jié)合題目條件,有時要適當(dāng)變形.9.若函數(shù),則下列結(jié)論正確的是(
)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時有是一個偶函數(shù)10.若非零向量滿足,則()
A.
B.
C.
D.答案:C11.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()
A.
B.
C.
D.
答案:A12.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.13.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A14.已知空間四邊形ABCD中,M、G分別為BC、CD的中點,則等于()
A.
B.
C.
D.
答案:A15.若不等式logax>sin2x(a>0,a≠1)對任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時,函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(π4,1)時,a=π4,然后它只能向右旋轉(zhuǎn),此時a在增大,但是不能大于1故選B.16.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=
.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(
CB-CA)=13CA+23CB,∴λ=23,故為:23.17.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個式中正確的是()
A.①②
B.②③
C.①④
D.②④答案:C18.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且
則滿足條件的函數(shù)f(x)有()
A.6個
B.10個
C.12個
D.16個答案:C19.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設(shè)其交點為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時,S取得最小值4.20.從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),這個兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個,根據(jù)古典概型概率公式得到P=820=25,故選B.21.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.22.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B23.電子跳蚤游戲盤是如圖所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤開始時在BC邊的點P0處,BP0=4.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數(shù)),則點P2010與C間的距離為______答案:∵由題意可以發(fā)現(xiàn)每邊各有兩點,其中BC邊上P0,P6,P12…重合,P3,P9,P15…重合,AC邊上P1,P7,P13…重合,P4,P10,P16…重合,AB邊上P2,P8,P14…重合,P5,P11,P17…重合.發(fā)現(xiàn)規(guī)律2010為六的倍數(shù)所以與P0重合,∴與C點之間的距離為6故為:624.下列賦值語句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C25.曲線C:x=t-2y=1t+1(t為參數(shù))的對稱中心坐標(biāo)是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).26.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C27.對變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B28.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C29.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點.
(1)求證:平面B1EF⊥平面BDD1B1;
(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)
建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.30.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關(guān)于曲線C有下列命題:
①曲線C是以F1、F2為焦點的橢圓的一部分;
②曲線C關(guān)于x軸、y軸、坐標(biāo)原點O對稱;
③若P是上任意一點,則PF1+PF2≤10;
④若P是上任意一點,則PF1+PF2≥10;
⑤曲線C圍成圖形的面積為30.
其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤31.M∪{1}={1,2,3}的集合M的個數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個數(shù)是2.故為:232.已知x,y的取值如下表所示:
x3711y102024從散點圖分析,y與x線性相關(guān),且y=74x+a,則a=______.答案:∵線性回歸方程為y=74x+a,,又∵線性回歸方程過樣本中心點,.x=3+7+113=7,.y=10+20+243=18,∴回歸方程過點(7,18)∴18=74×7+a,∴a=234.故為:234.33.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|
=1故為:134.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1235.如圖所示,圖中線條構(gòu)成的所有矩形中(由6個小的正方形組成),其中為正方形的概率為
______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因為,長與寬相互獨立,所以得到長X寬的個數(shù)有:10X10=100個即總的矩形的個數(shù)有:100個長=寬的個數(shù)為:(1X1的正方形的個數(shù))+(2X2的正方形個數(shù))+(3X3的正方形個數(shù))+(4X4的正方形個數(shù))=16+9+4+1=30個即正方形的個數(shù)有:30個所以為正方形的概率是30100=0.3故為0.336.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標(biāo)為(2,π4).故為:(2,π4).37.若a,b∈R,求證:≤+.答案:證明略解析:證明
當(dāng)|a+b|=0時,不等式顯然成立.當(dāng)|a+b|≠0時,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.38.直線和圓交于兩點,則的中點
坐標(biāo)為(
)A.B.C.D.答案:D解析:,得,中點為39.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準(zhǔn)線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(4,0),右準(zhǔn)線方程為:x=254.一個焦點到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.40.下面的結(jié)論正確的是()A.一個程序的算法步驟是可逆的B.一個算法可以無止境地運算下去的C.完成一件事情的算法有且只有一種D.設(shè)計算法要本著簡單方便的原則答案:算法需每一步都按順序進(jìn)行,并且結(jié)果唯一,不能保證可逆,故A不正確;一個算法必須在有限步內(nèi)完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個,但是存在一個比較好的,故C不正確;設(shè)計算法要盡量運算簡單,節(jié)約時間,故D正確,故選D.41.如果過點A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B42.為了了解1200名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個系統(tǒng)抽樣,總體中個體數(shù)是1200,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.43.用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設(shè)正確的是()
A.假設(shè)至少有一個鈍角
B.假設(shè)沒有一個鈍角
C.假設(shè)至少有兩個鈍角
D.假設(shè)沒有一個鈍角或至少有兩個鈍角答案:C44.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3545.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為______.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.46.如圖為一個求50個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()
A.i>50
B.i<50
C.i>=50
D.i<=50
答案:A47.高二年級某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.48.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C49.拋擲兩顆骰子,所得點數(shù)之和為ξ,那么ξ=4表示的隨機試驗結(jié)果是()
A.一顆是3點,一顆是1點
B.兩顆都是2點
C.兩顆都是4點
D.一顆是3點,一顆是1點或兩顆都是2點答案:D50.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識,某中學(xué)高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)下面的頻率分布表,解答下列問題:
序號
(i)分組
(分?jǐn)?shù))本組中間值
(Gi)頻數(shù)
(人數(shù))頻率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
計501(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于85分的同學(xué)能獲獎,請估計在參賽的800名學(xué)生中大概有多少同學(xué)獲獎?
(3)請根據(jù)頻率分布表估計該校高二年級參賽的800名同學(xué)的平均成績.答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計平均成績?yōu)?1分.(12分)第2卷一.綜合題(共50題)1.用反證法證明:“a>b”,應(yīng)假設(shè)為()
A.a(chǎn)>b
B.a(chǎn)<b
C.a(chǎn)=b
D.a(chǎn)≤b答案:D2.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.3.拋物線x2+y=0的焦點位于()
A.y軸的負(fù)半軸上
B.y軸的正半軸上
C.x軸的負(fù)半軸上
D.x軸的正半軸上答案:A4.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,15.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務(wù),它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A6.如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°7.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.8.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()
A.若2x+1是整數(shù),則x∈Z
B.若2x+1是奇數(shù),則x∈Z
C.若2x+1是偶數(shù),則x∈Z
D.若2x+1能被3整除,則x∈Z
E.若2x+1是整數(shù),則x∈Z答案:A9.中心在坐標(biāo)原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D10.如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(
).
A.6
B.13
C.
D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.11.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2312.曲線(θ為參數(shù))上的點到原點的最大距離為()
A.1
B.
C.2
D.答案:C13.不等式|x-500|≤5的解集是______.答案:因為不等式|x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.14.①點P在△ABC所在的平面內(nèi),且②點P為△ABC內(nèi)的一點,且使得取得最小值;③點P是△ABC所在平面內(nèi)一點,且,上述三個點P中,是△ABC的重心的有()
A.0個
B.1個
C.2個
D.3個答案:D15.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+216.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.17.經(jīng)過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時,設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x18.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()
A.
B.
C.
D.
答案:A19.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()
A.
B.2
C.
D.答案:C20.已知{x1,x2,x3,…,xn}的平均數(shù)是2,則3x1+2,3x2+2,…,3xn+2的平均數(shù)=_______.答案:∵x1,x2,x3,…,xn的平均數(shù)是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均數(shù)為(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故為:821.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()
A.26
B.24
C.20
D.19
答案:D22.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}23.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是
______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).24.在坐標(biāo)平面內(nèi),與點A(1,2)距離為1,且與點B(3,1)距離為2的直線共有()A.1條B.2條C.3條D.4條答案:分別以A、B為圓心,以1、2為半徑作圓,兩圓的公切線有兩條,即為所求.故選B.25.若A(-2,3),B(3,-2),C(,m)三點共線
則m的值為()
A.
B.-
C.-2
D.2答案:A26.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B27.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是[
]
A.4
B.-4
C.-5
D.6答案:A28.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值時兩圓外切?
(2)m取何值時兩圓內(nèi)切?
(3)當(dāng)m=45時,求兩圓的公共弦所在直線的方程和公共弦的長.答案:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得
11-61-m=5(舍去),或
11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時,兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長為211-4=27.29.在極坐標(biāo)中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()
A.
B.
C.
D.答案:A30.不等式的解集是
(
)A.B.C.D.答案:B解析:當(dāng)時,不等式成立;當(dāng)時,不等式可化為,解得綜上,原不等式解集為故選B31.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A32.過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M,N兩點,自M,N向準(zhǔn)線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C33.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O(shè)為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5234.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點在y軸,由此排除A.故選C.35.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對答案:C36.下列物理量中,不能稱為向量的是()A.質(zhì)量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;質(zhì)量只有大小沒有方向,因此質(zhì)量不是向量.而速度、位移、力既有大小,又有方向,因此它們都是向量.故選A.37.已知直線過點A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點都在l上答案:C38.設(shè)直角三角形的三邊長分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.39.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯誤;C、f(x)=x3,其定義域為R,故C錯誤;D、f(x)=ex,其定義域為R,故D錯誤;故選A.40.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()
A.24
B.48
C.144
D.288答案:C41.在用樣本頻率估計總體分布的過程中,下列說法正確的是()A.總體容量越大,估計越精確B.總體容量越小,估計越精確C.樣本容量越大,估計越精確D.樣本容量越小,估計越精確答案:∵用樣本頻率估計總體分布的過程中,估計的是否準(zhǔn)確與總體的數(shù)量無關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計的月準(zhǔn)確,故選C.42.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C43.直線l過橢圓x24+y23=1的右焦點F2并與橢圓交與A、B兩點,則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因為|AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.44.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C45.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時,復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B46.若x~N(2,σ2),P(0<x<4)=0.8,則P(0<X<2)=______.答案:∵X~N(2,σ2),∴正態(tài)曲線關(guān)于x=2對稱,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故為:0.4.47.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當(dāng)A1B1=A2B2
時,兩直線可能平行,也可能重合,故充分性不成立.當(dāng)l1∥l2時,B1與B2可能都等于0,故A1B1=A2B2
不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.48.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時,對應(yīng)的斜率k=tan30°=33故選:C.49.如右圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41
C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41
C12
C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.50.曲線x=sinθy=sin2θ(θ為參數(shù))與直線y=a有兩個公共點,則實數(shù)a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數(shù)),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.第3卷一.綜合題(共50題)1.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.2.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標(biāo)原點到直線AB的距離為32,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點M,N,求B1M⊥B1N時,直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.3.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.4.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或1325.不等式log12(x2-2x-15)>log12(x+13)的解集為______.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).6.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點在空間直角坐標(biāo)系中的位置是()
A.在y軸上
B.在xOy面內(nèi)
C.在xOz面內(nèi)
D.在yOz面內(nèi)答案:C7.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C8.半徑為1、2、3的三個圓兩兩外切.證明:以這三個圓的圓心為頂點的三角形是直角三角形.
答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.9.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負(fù)關(guān)于原點對稱,所以函數(shù)D(t)的圖象關(guān)于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.10.在航天員進(jìn)行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實施時必須相鄰,請問實驗順序的編排方法共有()
A.24種
B.48種
C.96種
D.144種答案:C11.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.12.若關(guān)于x的方程3x2-5x+a=0的一個根在(-2,0)內(nèi),另一個根在(1,3)內(nèi),求a的取值范圍。答案:解:設(shè)f(x)=3x2-5x+a,則f(x)為開口向上的拋物線,如右圖所示,∵f(x)=0的兩根分別在區(qū)間(-2,0),(1,3)內(nèi),∴,即,解得-12<a<0,故所求a的取值范圍是{a|-12<a<0}。13.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點,已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點的距離是
______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點的距離為458cm.14.若方程mx2+(m+1)x+m=0有兩個不相等的實根,則實數(shù)m的取值范圍是()
A.m>0
B.-<m<1
C.-<m<0或0<m<1
D.不確定答案:C15.直線l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()
A.
B.
C.
D.
答案:C16.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫出執(zhí)行該問題的程序框圖;
(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯誤,應(yīng)改成LOOP
UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1
應(yīng)改為輸出n;17.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()
A.
B.2
C.1
D.-1答案:D18.設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:“當(dāng)成立時,總可推出成立”.那么,下列命題總成立的是A.若成立,則當(dāng)時,均有成立B.若成立,則當(dāng)時,均有成立C.若成立,則當(dāng)時,均有成立D.若成立,則當(dāng)時,均有成立答案:D解析:若成立,依題意則應(yīng)有當(dāng)時,均有成立,故A不成立,若成立,依題意則應(yīng)有當(dāng)時,均有成立,故B不成立,因命題“當(dāng)成立時,總可推出成立”.“當(dāng)成立時,總可推出成立”.因而若成立,則當(dāng)時,均有成立,故C也不成立。對于D,事實上,依題意知當(dāng)時,均有成立,故D成立。19.x2+(m-3)x+m=0
一個根大于1,一個根小于1,m的范圍是______.答案:設(shè)f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.20.已知平面上直線l的方向向量=(-,),點O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()
A.
B.-
C.2
D.-2答案:D21.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.22.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()
A.都是兩個點
B.一條直線和一個圓
C.前者為兩個點,后者是一條直線和一個圓
D.前者是一條直線和一個圓,后者是兩個圓答案:D23.已知直線l經(jīng)過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點M在直線x+y-3=0上.求直線l的方程.答案:∵點M在直線x+y-3=0上,∴設(shè)點M坐標(biāo)為(t,3-t),則點M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.24.用數(shù)學(xué)歸納法證明“<n+1
(n∈N*)”.第二步證n=k+1時(n=1已驗證,n=k已假設(shè)成立),這樣證明:=<=(k+1)+1,所以當(dāng)n=k+1時,命題正確.此種證法()
A.是正確的
B.歸納假設(shè)寫法不正確
C.從k到k+1推理不嚴(yán)密
D.從k到k+1推理過程未使用歸納假設(shè)答案:D25.設(shè)a,b是非負(fù)實數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時,a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時,a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).26.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得27.寫出求1+2+3+4+5+6+…+100的一個算法.可運用公式1+2+3+…+n=n(n+1)2直接計算.
第一步______;
第二步______;
第三步
輸出計算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計算S=n(n+1)2.故為:取n=100;計算S=n(n+1)2.28.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.29.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為430.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求異面直線EC1與FD1所成角的大??;
(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).31.不等式0.52x>0.5x-1的解集為______.答案:由于函數(shù)y=0.5x
是R上的減函數(shù),故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集為(-∞,-1),故為(-∞,-1).32.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).
(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點),求向量OB;
(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時,n=24;當(dāng)t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅中醫(yī)藥大學(xué)《安全評價理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 超市購物小學(xué)生課件
- 七年級生物上冊第三單元第六章愛護植被綠化祖國教案新版新人教版
- 七年級道德與法治上冊第一單元成長的節(jié)拍第二課學(xué)習(xí)新天地第2框享受學(xué)習(xí)教案新人教版
- 三年級數(shù)學(xué)上冊七分?jǐn)?shù)的初步認(rèn)識一第2課時認(rèn)識幾分之幾教案蘇教版
- 三年級數(shù)學(xué)下冊一位置與方向第4課時簡單的路線圖教案新人教版
- 三年級科學(xué)下冊第三單元固體和液體4把液體倒進(jìn)水里去教案蘇教版
- 小學(xué)生安全會議課件下載
- 《英文歌曲介紹》課件
- 鞋廠培訓(xùn)課件
- 科技成果轉(zhuǎn)化培訓(xùn)資料
- 社會穩(wěn)定風(fēng)險評估 投標(biāo)方案(技術(shù)標(biāo))
- 生產(chǎn)線能耗分析報告模板
- 上海市松江區(qū)2023-2024學(xué)年高一上學(xué)期期末質(zhì)量監(jiān)控數(shù)學(xué)試卷 (解析版)
- 校外安全教育課件
- 人教版小學(xué)四年級語文上冊基礎(chǔ)練習(xí)題和答案全冊
- GB/T 43474-2023江河生態(tài)安全評估技術(shù)指南
- 人教版三年級數(shù)學(xué)上冊第五單元:倍數(shù)問題提高部分(解析版)
- 基于人工智能的惡意域名檢測技術(shù)研究
- 社區(qū)電動車應(yīng)急預(yù)案方案
- 公司股東債務(wù)分配承擔(dān)協(xié)議書正規(guī)范本(通用版)
評論
0/150
提交評論