2023年四川財經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年四川財經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年四川財經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年四川財經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年四川財經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年四川財經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.2.閱讀下面的程序框圖,該程序運行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.3.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標(biāo)

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A4.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.5.P是△ABC所在平面上的一點,且滿足,若△ABC的面積為1,則△PAB的面積為()

A.

B.

C.

D.答案:B6.若函數(shù),則下列結(jié)論正確的是(

)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時有是一個偶函數(shù)7.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.8.方程4x-3×2x+2=0的根的個數(shù)是(

A.0

B.1

C.2

D.3答案:C9.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.10.下列命題錯誤的是(

)A.命題“若,則中至少有一個為零”的否定是:“若,則都不為零”。B.對于命題,使得;則是,均有。C.命題“若,則方程有實根”的逆否命題為:“若方程無實根,則”。D.“”是“”的充分不必要條件。答案:A解析:命題的否定是只否定結(jié)論,∴選A.11.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1012.已知向量=(1,2),=(2,x),且=-1,則x的值等于()

A.

B.

C.

D.答案:D13.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.14.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為()

A.0.9

B.0.5

C.0.6

D.0.8答案:D15.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C16.已知三個向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實數(shù),,使p=λq+μr,故向量p、q、r共面.17.______稱為向量;常用

______表示,記為

______,又可用小寫字線表示為

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….18.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.19.集合{x∈N*|

12

x

∈Z}中含有的元素個數(shù)為()

A.4

B.6

C.8

D.12答案:B20.參數(shù)方程x=3cosθy=4sinθ,(θ為參數(shù))化為普通方程是______.答案:由參數(shù)方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡得x29+y216=1,即為橢圓的普通方程故為:x29+y216=121.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.22.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.23.在直角坐標(biāo)系xoy

中,已知曲線C1:x=t+1y=1-2t(t為參數(shù))與曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

有一個公共點在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數(shù))化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

)化為普通方程:x2a2+y29=1∵兩曲線有一個公共點在x軸上,∴94a2=1∴a=32故為:3224.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()

A.互斥事件

B.對立事件

C.不是互斥事件

D.前者都不對答案:D25.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(

A.-3

B.2

C.-3或2

D.3或-2答案:A26.下列函數(shù)中,定義域為(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域為(0,+∞),函數(shù)y=x的定義域為[0,+∞),函數(shù)y=1x2的定義域為{x|x≠0},函數(shù)y=12x的定義域為R,故只有A中的函數(shù)滿足定義域為(0,+∞),故選A.27.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,528.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B29.如圖,在長方體OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,點P在棱AA1上,且AP=2PA1,點S在棱BB1上,且SB1=2BS,點Q、R分別是O1B1、AE的中點,求證:PQ∥RS.答案:證明:如圖,建立空間直角坐標(biāo)系,則A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0),∵AP=2PA1,∴AP=2PA1=23AA1,即AP=23(0,0,2)=(0,0,43),∴P(3,0,43)同理可得,Q(0,2,2),R(3,2,0),S(0,4,23),∴PQ=(-3,2,23)=RS,∴PQ∥RS,∵R?PQ,∴PQ∥RS30.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()

A.y=-x

B.

C.y=-3x

D.答案:A31.已知點P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A32.由9個正數(shù)組成的矩陣

中,每行中的三個數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個數(shù)之和等于9,則a22≥1.其中正確的個數(shù)有()

A.1個

B.2個

C.3個

D.4個答案:B33.平面ABCD中,點A坐標(biāo)為(0,1,1),點B坐標(biāo)為(1,2,1),點C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.34.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()

A.3

B.2

C.

D.答案:A35.已知O是空間任意一點,A、B、C、D四點滿足任三點均不共線,但四點共面,且=2x+3y+4z,則2x+3y+4z=(

)答案:﹣136.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準(zhǔn)線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標(biāo)是3,則p=(

)。答案:237.欲對某商場作一簡要審計,通過檢查發(fā)票及銷售記錄的2%來快速估計每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.這種抽取樣本的方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個體比較多,抽樣時某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,這是系統(tǒng)抽樣中的分組,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.故選B.38.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時,試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時,2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時,猜想2n>n2-n+2,證明如下:當(dāng)n=4時,顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時,猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時,猜想2n>n2-n+2成立,∴當(dāng)n≥4時,an>n2+1.39.下列各組向量中不平行的是()A.a(chǎn)=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:選項A中,b=-2a?a∥b;選項B中有:d=-3c?d∥c,選項C中零向量與任意向量平行,選項D,事實上不存在任何一個實數(shù)λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故應(yīng)選:D40.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.41.如圖,圓O上一點C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1042.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對任意自然數(shù)均有xn+1=f(xn),則x2004的值為()

A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.43.與函數(shù)y=x相等的函數(shù)是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對于A,f(x)=x(x≥0),不符合;對于B,f(x)=x(x≠0),不符合;對于C,f(x)=|x|(x∈R),不符合;對于D,f(x)=x(x∈R),符合;故選D.44.在數(shù)列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)計算a2,a3,a4

(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個猜想.①當(dāng)n=1時,a1=1,命題成立.②假設(shè)n=k時命題成立,即ak=2k+1當(dāng)n=k+1時ak+1=2a

k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對一切n∈N*均成立.45.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.46.下列說法中正確的是()A.一個命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價,故B錯誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D47.位于直角坐標(biāo)原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點P移動五次后位于點(1,0)的概率是()

A.

B.

C.

D.答案:D48.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7649.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.50.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()

A.31

B.36

C.35

D.34答案:B第2卷一.綜合題(共50題)1.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.2.過點(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.3.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.4.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()

A.8

B.10

C.12

D.14答案:B5.定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點。

已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;

(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+的圖象上,求b的最小值。

(參考公式:A(x1,y1),B(x2,y2)的中點坐標(biāo)為)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不動點為-1或3。(2)令ax2+(b+1)x+b+1=x,則ax2+bx+b-1=0,①由題意,方程①恒由兩個不等實根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0對任意的b∈R恒成立,則△′=16a2-16a<0,故0(3)依題意,設(shè),則AB中點C的坐標(biāo)為,又AB的中點在直線上,∴,∴,又x1,x2是方程①的兩個根,∴,∴,,∴,∴當(dāng)時,bmin=-1。</a<1。6.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:1657.已知△ABC是邊長為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()

A.a(chǎn)2

B.a(chǎn)2

C.a(chǎn)2

D.a(chǎn)2答案:C8.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測量(軸的直徑要求為(20±0.5)mm),如何采用簡單隨機(jī)抽樣方法抽取上述樣本?答案:本題是一個簡單抽樣,∵100件軸的直徑的全體是總體,將其中的100個個體編號00,01,02,…,99,利用隨機(jī)數(shù)表來抽取樣本的10個號碼,可以從表中的第20行第3列的數(shù)開始,往右讀數(shù),得到10個號碼如下:16,93,32,43,50,27,89,87,19,20將上述號碼的軸在同一條件下測量直徑.9.一位運動員投擲鉛球的成績是14m,當(dāng)鉛球運行的水平距離是6m時,達(dá)到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D10.在空間直角坐標(biāo)系中,已知兩點P1(-1,3,5),P2(2,4,-3),則|P1P2|=()

A.

B.3

C.

D.答案:A11.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時,試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時,2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時,猜想2n>n2-n+2,證明如下:當(dāng)n=4時,顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時,猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時,猜想2n>n2-n+2成立,∴當(dāng)n≥4時,an>n2+1.12.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()

A.1

B.2

C.3

D.5

答案:D13.已知A、B、C三點共線,A分的比為λ=-,A,B的縱坐標(biāo)分別為2,5,則點C的縱坐標(biāo)為()

A.-10

B.6

C.8

D.10答案:D14.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設(shè)錯誤,(2)的假設(shè)正確

B.(1)與(2)的假設(shè)都正確

C.(1)的假設(shè)正確,(2)的假設(shè)錯誤

D.(1)與(2)的假設(shè)都錯誤答案:A15.2010年廣州亞運會乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當(dāng),比賽實行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;

(2)比賽打滿七局的概率.(3)記比賽結(jié)束時的比賽局?jǐn)?shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因為事件A、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時,比賽的局?jǐn)?shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)16.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B17.某房間有四個門,甲要各進(jìn)、出這個房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C18.對于5年可成材的樹木,從栽種到5年成材的木材年生長率為18%,以后木材的年生長率為10%.樹木成材后,既可以出售樹木,重栽新樹苗;也可以讓其繼續(xù)生長.問:哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數(shù)據(jù):lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結(jié)果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.19.若隨機(jī)變量X的概率分布如下表,則表中a的值為()

X

1

2

3

4

P

0.2

0.3

0.3

a

A.1

B.0.8

C.0.3

D.0.2答案:D20.用反證法證明命題:“三角形的內(nèi)角至多有一個鈍角”,正確的假設(shè)是()

A.三角形的內(nèi)角至少有一個鈍角

B.三角形的內(nèi)角至少有兩個鈍角

C.三角形的內(nèi)角沒有一個鈍角

D.三角形的內(nèi)角沒有一個鈍角或至少有兩個鈍角答案:B21.已知方程x2-6x+a=0的兩個不等實根均大于2,則實數(shù)a的取值范圍為()

A.[4,9)

B.(4,9]

C.(4,9)

D.(8,9)答案:D22.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(

)

答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.23.觀察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5個等式應(yīng)為______.答案:由題意,(i)等式左邊為一段連續(xù)自然數(shù)之和,且最后一個和數(shù)恰為各等式序號的立方,最前一個和數(shù)恰為等式序號減1平方加1;(ii)等式右邊均為兩數(shù)立方和,且也與等式序號具有明顯的相關(guān)性.故猜想第5個等式應(yīng)為17+18+19+20+21+22+23+24+25=64+125故為:17+18+19+20+21+22+23+24+25=64+12524.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點與定點A(-1,-1)的距離的最小值是

______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點A(-1,-1)到圓心的距離為5∴與定點A(-1,-1)的距離的最小值是d-r=5-1故為5-125.已知單位向量a,b的夾角為,那么|a+2b|=()

A.2

B.

C.2

D.4答案:B26.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c27.已知頂點在坐標(biāo)原點,焦點在x軸上的拋物線被直線y=2x+1截得的弦長為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x28.若三角形的內(nèi)切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和.故為:13R(S1+S2+S3+S4).29.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,

(1)與向量FE共線的有

______.

(2)與向量DF的模相等的有

______.

(3)與向量ED相等的有

______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.30.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()

A向東南航行km

B.向東南航行2km

C.向東北航行km

D.向東北航行2km答案:A31.在極坐標(biāo)中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()

A.

B.

C.

D.答案:A32.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.33.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側(cè),F(xiàn)為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時P點坐標(biāo)為(14,-1).…(12分).34.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C35.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()

A.0.1

B.0.2

C.0.3

D.0.4答案:C36.如圖,一個正方體內(nèi)接于一個球,過球心作一個截面,則截面的可能圖形為(

A.①③

B.②④

C.①②③

D.②③④答案:C37.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B38.某科目考試有30道題每小題有三個選項,每題2分,另有20道題,每題有四個選項每題3分,每題只有一個答案,某人隨機(jī)去選答案,則平均能得______分.答案:由題意,30道題每小題有三個選項,每題2分,每題只有一個,某人隨機(jī)去選,則可得2×30×13=20分;20道題,每題有四個選項每題3分,每題只有一個,某人隨機(jī)去選,則可得3×20×14=15分故平均能得35分故為:35分.39.已知直線l的斜率為k=-1,經(jīng)過點M0(2,-1),點M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4

(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).40.某校為提高教學(xué)質(zhì)量進(jìn)行教改實驗,設(shè)有試驗班和對照班.經(jīng)過兩個月的教學(xué)試驗,進(jìn)行了一次檢測,試驗班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.41.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()A.a(chǎn)=(0,0),b=(1,-2)B.a(chǎn)=(1,-2),b=(2,-4)C.a(chǎn)=(3,5),b=(6,10)D.a(chǎn)=(2,-3),b=(6,9)答案:可以作為基底的向量需要是不共線的向量,A中一個向量是零向量,兩個向量共線,不合要求B中兩個向量是a=12b,兩個向量共線,C項中的兩個向量也共線,故選D.42.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.43.(文)若拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合,則實數(shù)p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點坐標(biāo)為(2,0)∵拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合∴拋物線y2=2px中p=4故為444.如圖,圓與圓內(nèi)切于點,其半徑分別為與,圓的弦交圓于點(不在上),求證:為定值。

答案:見解析解析:考察圓的切線的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得45.若圓x2+y2=9上每個點的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()

A.

B.

C.

D.答案:C46.已知向量,,若與共線,則的值為

A

B

C

D

答案:D解析:,,由,得47.在極坐標(biāo)系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標(biāo)為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.48.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個容量為100的樣本,其頻率分布表(不完整)如下:

分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成頻率分布表;

(Ⅱ)畫出頻率分布直方圖;

(Ⅲ)據(jù)上述圖表,估計產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.49.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時,取得最小值83B.當(dāng)x=2時,取得最大值83C.當(dāng)x=2時,取得最小值22D.當(dāng)x=2時,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時,取得最大值22故選D.50.根據(jù)如圖的框圖,寫出打印的第五個數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運行過程中各變量的情況如下表示:

是否繼續(xù)循環(huán)

A

N循環(huán)前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以這個打印的第五個數(shù)是31.故為:31第3卷一.綜合題(共50題)1.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.

(Ⅰ)求動點N的軌跡E的方程;

(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設(shè)N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設(shè)直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設(shè)A(x1,y1),B(x2,y2),則

y1+y2=4k,y1y2=-4.假設(shè)存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關(guān)于m的方程m2-m(4k2+2)-3=0有解.∴假設(shè)成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.2.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B3.下面對算法描述正確的一項是:()A.算法只能用自然語言來描述B.算法只能用圖形方式來表示C.同一問題可以有不同的算法D.同一問題的算法不同,結(jié)果必然不同答案:算法的特點:有窮性,確定性,順序性與正確性,不唯一性,普遍性算法可以用自然語言、圖形語言,程序語言來表示,故A、B不對同一問題可以用不同的算法來描述,但結(jié)果一定相同,故D不對.C對.故應(yīng)選C.4.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.5.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線6.設(shè)x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A7.給出的下列幾個命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實數(shù)λ,使

其中真命題的個數(shù)為()

A.0

B.1

C.2

D.3答案:B8.若f(x)=x2,則對任意實數(shù)x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A9.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.10.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,111.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c12.如圖,橢圓C2x2a2+

y2b2=1的焦點為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)n為過原點的直線,l是與n垂直相交與點P,與橢圓相交于A,B兩點的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設(shè)A、B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),假設(shè)使OA?OB=0成立的直線l存在.(i)當(dāng)l不垂直于x軸時,設(shè)l的方程為y=kx+m,由l與n垂直相交于P點,且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡得-5(k2+1)=0矛盾.即此時直線l不存在.(ii)當(dāng)l垂直于x軸時,滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點的坐標(biāo)為(1,32),(1,-32)或(-1,32),(-1,-32).當(dāng)x=1時,OA?OB=(1,32)?

(1,-32)=-54≠0.當(dāng)x=-1時,OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.13.若a,b∈R,求證:≤+.答案:證明略解析:證明

當(dāng)|a+b|=0時,不等式顯然成立.當(dāng)|a+b|≠0時,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.14.若數(shù)列{an}是等差數(shù)列,對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,對于dn>0,則dn=______時,數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時,數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn15.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.16.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學(xué)生到達(dá)該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時間長度總的時間長度=3075=25.故選A.17.圖是正方體平面展開圖,在這個正方體中

①BM與ED垂直;

②DM與BN垂直.

③CN與BM成60°角;④CN與BE是異面直線.

以上四個命題中,正確命題的序號是______.答案:由已知中正方體的平面展開圖,我們可以得到正方體的直觀圖如下圖所示:由正方體的幾何特征可得:①BM與ED垂直,正確;

②DM與BN垂直,正確;③CN與BM成60°角,正確;④CN與BE平行,故CN與BE是異面直線,錯誤;故為:①②③18.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B19.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()

A.

B.

C.

D.答案:A20.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C21.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()

A.

B.2

C.

D.答案:C22.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對x分3種情況討論:①當(dāng)x<0時,原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時,不等式的解集為?.②當(dāng)0≤x<12時,原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時其解集為{x|0<x<12}.③當(dāng)x≥12

時,原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.23.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則的度數(shù)為何()

A.50°

B.60°

C.100°

D.120°

答案:C24.正方體ABCD-A1B1C1D1的棱長為1,點M是棱AB的中點,點P是平面ABCD上的一動點,且點P到直線A1D1的距離兩倍的平方比到點M的距離的平方大4,則點P的軌跡為()A.圓B.橢圓C.雙曲線D.拋物線答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標(biāo)系,則M(,12,0),設(shè)P(x,y)則|MP|2=y2+(x-12)2點P到直線A1D1的距離為x2+1由題意得4(x2+1)=

y2+(x-12)2+4即3(x+12)2-y2=74選C25.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準(zhǔn)線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(4,0),右準(zhǔn)線方程為:x=254.一個焦點到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.26.已知雙曲線的兩條準(zhǔn)線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.27.已知P:2+2=5,Q:3>2,則下列判斷錯誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯誤.故選C.28.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ

(1)求△ABC的面積f(θ)與正方形面積g(θ);

(2)當(dāng)θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

設(shè)正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時成立)∴當(dāng)θ=π4時,f(θ)g(θ)的最小值為94.29.過點P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點P平分,該直線的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C30.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應(yīng)從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應(yīng)從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.31.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點,若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故為:12a-32b+12c.32.已知向量,,則“,λ∈R”成立的必要不充分條件是()

A.

B與方向相同

C.

D.答案:D33.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.34.為了了解某地母親身高x與女兒身高y的相關(guān)關(guān)系,隨機(jī)測得10對母女的身高如下表所示:

母親身高x(cm)159160160163159154159158159157女兒身高y(cm)158159160161161155162157162156計算x與y的相關(guān)系數(shù)r=0.71,通過查表得r的臨界值r0.05=______,從而有______的把握認(rèn)為x與y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y=35.2+0.78x,當(dāng)母親身高每增加1cm時,女兒身高_(dá)_____,當(dāng)母親的身高為161cm時,估計女兒的身高為______cm.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=35.2+0.78x,因此,當(dāng)母親身高每增加1cm時,女兒身高0.78,當(dāng)x=161cm時,y=35.2+0.78x=35.2+0.78×161

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論