2023年四川職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年四川職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年四川職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年四川職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年四川職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年四川職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C2.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D3.構(gòu)成多面體的面最少是(

A.三個

B.四個

C.五個

D.六個答案:B4.已知D是△ABC所在平面內(nèi)一點,,則()

A.

B.

C.=

D.答案:A5.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求

(1)a?(b+c);

(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a?(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).6.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()

A.45°

B.30°

C.60°

D.90°答案:D7.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D8.在極坐標(biāo)系中,若點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,則ρ0=______.答案:∵點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.9.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:210.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D11.下列各量:①密度

②浮力

③風(fēng)速

④溫度,其中是向量的個數(shù)有()個.A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時具有大小和方向兩個要素才是向量,在所給的四個量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個數(shù)是2個,故選C.12.設(shè)平面α內(nèi)兩個向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B13.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.14.小王通過英語聽力測試的概率是,他連續(xù)測試3次,那么其中恰有1次獲得通過的概率是()

A.

B.

C.

D.答案:A15.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2016.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B17.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)18.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR

①,20π=α(20+R)

②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.19.若直線l:ax+by=1與圓C:x2+y2=1有兩個不同交點,則點P(a,b)與圓C的位置關(guān)系是(

A.點在圓上

B.點在圓內(nèi)

C.點在圓外

D.不能確定答案:C20.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.21.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A22.將包含甲、乙兩人的4位同學(xué)平均分成2個小組參加某項公益活動,則甲、乙兩名同學(xué)分在同一小組的概率為()

A.

B.

C.

D.答案:C23.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()

A.①③

B.①②

C.③④

D.①④答案:B24.直線2x-y=7與直線3x+2y-7=0的交點是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A25.已知曲線C1,C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點的極坐標(biāo)為______.答案:我們通過聯(lián)立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點為(23,π6).故填:(23,π6).26.某重點高中高二歷史會考前,進(jìn)行了五次歷史會考模擬考試,某同學(xué)在這五次考試中成績?nèi)缦拢?0,90,93,94,93,則該同學(xué)的這五次成績的平均值和方差分別為()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B27.設(shè)隨機(jī)變量X服從B(6,),則P(X=3)的值是()

A.

B.

C.

D.答案:B28.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個數(shù)為()

A.1個

B.2個

C.3個

D.4個答案:C29.已知a=20.5,,,則a,b,c的大小關(guān)系是()

A.a(chǎn)>c>b

B.a(chǎn)>b>c

C.c>b>a

D.c>a>b答案:B30.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()

A.P(n)對所有自然數(shù)n都成立

B.P(n)對所有正偶數(shù)n成立

C.P(n)對所有正奇數(shù)n都成立

D.P(n)對所有大于1的自然數(shù)n成立答案:B31.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A32.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A33.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C34.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()

A.8

B.10

C.12

D.14答案:B35.不等式x+x3≥0的解集是(

)。答案:{x|x≥0}36.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)37.一個總體中有100個個體,隨機(jī)編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機(jī)抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k號碼的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是()

A.66

B.76

C.63

D.73答案:C38.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()

A.相交

B.相切

C.相離

D.與k的取值有關(guān)答案:A39.若向量=(1,λ,2),=(2,-1,2)且與的夾角余弦為,則λ等于(

A.2

B.-2

C.-2或

D.2或答案:C40.已知點G是△ABC的重心,點P是△GBC內(nèi)一點,若,則λ+μ的取值范圍是()

A.

B.

C.

D.(1,2)答案:B41.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數(shù)λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-342.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81

243=81×3+0

則324與243的最大公約數(shù)為81又135=81×1+54

81=54×1+27

54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。43.已知△ABC三個頂點的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.44.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.45.設(shè)、、是三角形的邊長,求證:

≥答案:證明見解析解析:證明:由不等式的對稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥046.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.47.在半徑為1的圓內(nèi)任取一點,以該點為中點作弦,則所做弦的長度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點必須在半徑為12圓內(nèi),則所做弦的長度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.48.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,則∴左邊=≥=.∴原不等式成立.49.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是C31+C41+C51+…+C71=25故為:2550.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D第2卷一.綜合題(共50題)1.若隨機(jī)向一個半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π2.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()

A.

B.

C.

D.

答案:A3.在空間直角坐標(biāo)系0xyz中有兩點A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.4.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點,長軸在x軸上,離心率為32,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.5.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C6.由1、2、3可以組成______個沒有重復(fù)數(shù)字的兩位數(shù).答案:沒有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個故為:67.若a,b∈{2,3,4,5,7},則可以構(gòu)成不同的橢圓的個數(shù)為()

A.10

B.20

C.5

D.15答案:B8.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數(shù)λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-39.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對答案:B10.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運行①N=1×2,此時i變成3,滿足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時i變成4,滿足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時i變成5,滿足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12011.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()A.a(chǎn)=(0,0),b=(1,-2)B.a(chǎn)=(1,-2),b=(2,-4)C.a(chǎn)=(3,5),b=(6,10)D.a(chǎn)=(2,-3),b=(6,9)答案:可以作為基底的向量需要是不共線的向量,A中一個向量是零向量,兩個向量共線,不合要求B中兩個向量是a=12b,兩個向量共線,C項中的兩個向量也共線,故選D.12.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3413.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對答案:因為“△ABC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.14.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.15.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.16.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α17.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.18.設(shè)α∈[0,π],則方程x2sinα+y2cosα=1不能表示的曲線為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:C19.A、B為球面上相異兩點,則通過A、B兩點可作球的大圓有()A.一個B.無窮多個C.零個D.一個或無窮多個答案:如果A,B兩點為球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的無數(shù)個大圓如果A,B兩點不是球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的一個大圓故選:D20.已知二階矩陣A=2ab0屬于特征值-1的一個特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.21.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.22.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A23.設(shè)a=log32,b=log23,c=,則()

A.c<b<a

B.a(chǎn)<c<b

C.c<a<b

D.b<c<a答案:C24.向面積為S的△ABC內(nèi)任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.25.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3226.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因為半徑為5,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.27.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標(biāo)準(zhǔn)方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.28.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個交點,故k=f(x)x(x>0)可分別有2,3,4個解.故n的取值范圍為2,3,4.故選B.29.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B30.命題“正數(shù)的絕對值等于它本身”的逆命題是______.答案:將命題“正數(shù)的絕對值等于它本身”改寫為“若一個數(shù)是正數(shù),則其絕對值等于它本身”,所以逆命題是“若一個數(shù)的絕對值等于它本身,則這個數(shù)是正數(shù)”,即“絕對值等于它本身的數(shù)是正數(shù)”.故為:“絕對值等于它本身的數(shù)是正數(shù)”.31.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.32.當(dāng)x∈N+時,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當(dāng)x∈N+時,(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.33.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D34.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若k2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病

B.從獨立性檢驗可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時,我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤

D.以上三種說法都不正確答案:D35.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;

(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;

(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.36.計算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運算性質(zhì):x10÷x5=x5故為:x537.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()

A.至少有一個黒球與都是紅球

B.至少有一個黒球與都是黒球

C.至少有一個黒球與至少有1個紅球

D.恰有1個黒球與恰有2個黒球答案:D38.某程序圖如圖所示,該程序運行后輸出的結(jié)果是______.答案:由圖知運算規(guī)則是對S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運行后輸出的結(jié)果是:k=4+1=5.故為:539.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,

=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.40.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.41.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1

200人,女學(xué)生1

000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19242.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(

)

A.

B.

C.

D.

答案:C43.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因為直線y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.44.設(shè)P、Q為兩個非空實數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時,b∈Q,P+Q={1,2,6}當(dāng)a=2時,b∈Q,P+Q={3,4,8}當(dāng)a=5時,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C45.某校為提高教學(xué)質(zhì)量進(jìn)行教改實驗,設(shè)有試驗班和對照班.經(jīng)過兩個月的教學(xué)試驗,進(jìn)行了一次檢測,試驗班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.46.一位母親記錄了她的兒子3~9歲的身高數(shù)據(jù),并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個模型預(yù)測她的兒子10歲時的身高,則正確的敘述是()A.身高一定是145.83

cmB.身高在145.83

cm以上C.身高在145.83

cm左右D.身高在145.83

cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預(yù)報孩子10歲時的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時的身高在145.83cm左右.故選C.47.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.48.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D49.如圖,四面體ABCD中,點E是CD的中點,記=(

A.

B.

C.

D.

答案:B50.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()

A.

B.

C.

D.2答案:A第3卷一.綜合題(共50題)1.小王通過英語聽力測試的概率是,他連續(xù)測試3次,那么其中恰有1次獲得通過的概率是()

A.

B.

C.

D.答案:A2.在投擲兩枚硬幣的隨機(jī)試驗中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()

A.既是互斥事件又是對立事件

B.是對立事件而非互斥事件

C.既非互斥事件也非對立事件

D.是互斥事件而非對立事件答案:D3.已知回歸直線的斜率的估計值是1.23,樣本中心點為(4,5),若解釋變量的值為10,則預(yù)報變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設(shè)回歸方程為y=1.23x+b,∵樣本中心點為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時,y=12.38故選C.4.一個完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來表示程序的開始和結(jié)束,還要包括處理框,用來處理程序的執(zhí)行.故為:起止框、處理框.5.從某校隨機(jī)抽取了100名學(xué)生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學(xué)生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;506.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.7.△ABC內(nèi)接于以O(shè)為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O(shè)為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.8.如圖所示,已知A、B、C三點不共線,O為平面ABC外的一點,若點M滿足

(1)判斷三個向量是否共面;

(2)判斷點M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個向量的基線又有公共點M,∴M、A、B、C共面,即點M在平面ABC內(nèi),9.已知x與y之間的一組數(shù)據(jù):

x0123y1357則y與x的線性回歸方程為y=bx+a必過點______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(1.5,4)故為:(1.5,4)10.下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的線性回歸方程

必過點()

x

0

1

2

3

y

1

3

5

7

A.(2,2)

B.(1.5,2)

C.(1,2)

D.(1.5,4)答案:D11.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()

A.

B.

C.

D.2答案:A12.已知點M的極坐標(biāo)為,下列所給四個坐標(biāo)中能表示點M的坐標(biāo)是()

A.

B.

C.

D.答案:D13.過點P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點P平分,該直線的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C14.直線上與點的距離等于的點的坐標(biāo)是_______。答案:,或15.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.16.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:

方案1:運走設(shè)備,此時需花費4000元;

方案2:建一保護(hù)圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56

000元;

方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達(dá)60000元,只有一條河流發(fā)生洪水時,損失為10000元.

(1)試求方案3中損失費ξ(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設(shè)損失費為隨機(jī)變量ξ,則ξ的分布列為:(2)對方案1來說,花費4000元;對方案2來說,建圍墻需花費1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時,損失約56000元,而兩河流同時發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費為:1000+56000×0.045=3520(元).對于方案來說,損失費的數(shù)學(xué)期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.17.設(shè)直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()

A.±

B.±2

C.±2

D.±4答案:B18.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.19.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達(dá)點Q,則點Q的坐標(biāo)為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C20.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形21.某學(xué)校為了解該校1200名男生的百米成績(單位:秒),隨機(jī)選擇了50名學(xué)生進(jìn)行調(diào)查.如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)樣本的頻率分布,估計這1200名學(xué)生中成績在[13,15](單位:秒)內(nèi)的人數(shù)大約是______.答案:∵由圖知,前面兩個小矩形的面積=0.02×1+0.18×1=0.2,即頻率,∴1200名學(xué)生中成績在[13,15](單位:s)內(nèi)的人數(shù)大約是0.2×1200=240.故為240.22.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:B23.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1224.用0、1、2、3、4、5這6個數(shù)字,可以組成無重復(fù)數(shù)字的五位偶數(shù)的個數(shù)為______(用數(shù)字作答).答案:末尾是0時,有A55=120種;末尾不是0時,有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31225.利用“直接插入排序法”給按從大到小的順序排序,

當(dāng)插入第四個數(shù)時,實際是插入哪兩個數(shù)之間(

)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;26.4名學(xué)生參加3項不同的競賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個分步計數(shù)問題,首先第一名學(xué)生從三種不同的競賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競賽中選有3種結(jié)果,同理第三個和第四個同學(xué)從三種競賽中選都有3種結(jié)果,∴根據(jù)分步計數(shù)原理得到共有3×3×3×3=34故選A.27.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學(xué)生到達(dá)該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時間長度總的時間長度=3075=25.故選A.28.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)29.某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1230.用數(shù)學(xué)歸納法證明“<n+1

(n∈N*)”.第二步證n=k+1時(n=1已驗證,n=k已假設(shè)成立),這樣證明:=<=(k+1)+1,所以當(dāng)n=k+1時,命題正確.此種證法()

A.是正確的

B.歸納假設(shè)寫法不正確

C.從k到k+1推理不嚴(yán)密

D.從k到k+1推理過程未使用歸納假設(shè)答案:D31.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設(shè)OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.32.已知,求證:答案:證明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等號成立的條件分別為,,故不能同時成立,從而.33.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.34.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C35.將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.

B.

C.

D.

答案:B36.若a=()x,b=x3,c=logx,則當(dāng)x>1時,a,b,c的大小關(guān)系式(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論