2023年吉林職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年吉林職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年吉林職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年吉林職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年吉林職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年吉林職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.過點(-1,3)且平行于直線x-2y+3=0的直線方程為()

A.x-2y+7=0

B.2x+y-1=0

C.x-2y-5=0

D.2x+y-5=0答案:A2.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()

A.0.8

B.0.75

C.0.6

D.0.48答案:B3.

如圖,平面內(nèi)向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2

,則λ等()

A.

B.1

C.

D.2

答案:D4.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或65.一個箱中原來裝有大小相同的

5

個球,其中

3

個紅球,2

個白球.規(guī)定:進(jìn)行一次操

作是指“從箱中隨機(jī)取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補一個紅球放到箱中.”

(1)求進(jìn)行第二次操作后,箱中紅球個數(shù)為

4

的概率;

(2)求進(jìn)行第二次操作后,箱中紅球個數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個數(shù)為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.6.極坐標(biāo)方程ρcos2θ=0表示的曲線為()

A.極點

B.極軸

C.一條直線

D.兩條相交直線答案:D7.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B8.在曲線(t為參數(shù))上的點是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A9.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______

時,方程的解集是有限集;滿足條件______

時,方程的解集是無限集;滿足條件______

時,方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.10.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21511.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:212.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數(shù)λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-313.如果過點A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B14.若直線過點(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C15.求證:定義在實數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個交點…(2分)設(shè)交點的橫坐標(biāo)分別為x1,x2,且x1<x2.因為函數(shù)y=f(x)在實數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.

…(12分)故原命題成立.…(14分)16.已知某一隨機(jī)變量ξ的分布列如下,且Eξ=6.3,則a的值為()

ξ

4

a

9

P

0.5

0.1

b

A.5

B.6

C.7

D.8答案:C17.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.18.已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點,N(2,0),線段AN的垂直平分線交MA于點P,則動點P的軌跡是()

A.圓

B.橢圓

C.雙曲線

D.拋物線答案:B19.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.20.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.21.某批n件產(chǎn)品的次品率為1%,現(xiàn)在從中任意地依次抽出2件進(jìn)行檢驗,問:

(1)當(dāng)n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)

(2)根據(jù)(1),談?wù)勀銓Τ瑤缀畏植寂c二項分布關(guān)系的認(rèn)識.答案:(1)當(dāng)n=100時,如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產(chǎn)品中次品數(shù)為1,正品數(shù)是99,從100件產(chǎn)品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當(dāng)n=1000時,如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產(chǎn)品中次品數(shù)為10,正品數(shù)是990,從1000件產(chǎn)品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產(chǎn)品中次品數(shù)為1000,正品數(shù)是9000,從10000件產(chǎn)品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關(guān)系的認(rèn)識:共同點:每次試驗只有兩種可能的結(jié)果:成功或失?。煌c:1、超幾何分布是不放回抽取,二項分布是放回抽??;

2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯(lián)系:當(dāng)產(chǎn)品的總數(shù)很大時,超幾何分布近似于二項分布.22.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標(biāo)方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)23.數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時,第一步驗證的表達(dá)式為______.答案:根據(jù)數(shù)學(xué)歸納法的步驟,首先要驗證證明當(dāng)n取第一個值時命題成立;結(jié)合本題,要驗證n=1時,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對).24.已知=(1,2),=(-3,2),k+與-3垂直時,k的值為(

A.17

B.18

C.19

D.20答案:C25.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對答案:B26.已知隨機(jī)變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B27.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.28.設(shè)雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(I)求雙曲線C的離心率e的取值范圍:

(II)設(shè)直線l與y軸的交點為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個不同的點,故知方程組x2a2-y2=1x+y=1.有兩個不同的實數(shù)解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設(shè)A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.29.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C30.已知函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.31.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1,即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3232.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D33.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.34.已知a≠0,證明關(guān)于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設(shè)方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設(shè)矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.35.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.

(Ⅰ)求動點N的軌跡E的方程;

(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設(shè)N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設(shè)直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設(shè)A(x1,y1),B(x2,y2),則

y1+y2=4k,y1y2=-4.假設(shè)存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關(guān)于m的方程m2-m(4k2+2)-3=0有解.∴假設(shè)成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.36.運行如圖的程序,將自然數(shù)列0,1,2,…依次輸入作為a的值,則輸出結(jié)果x為______.

答案:當(dāng)n=2時,x=5×6+0=30,當(dāng)n=1時,x=30×6+1=181,當(dāng)n=0時,x=181×6+2=1088,故為:108837.(選做題)某制藥企業(yè)為了對某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:738.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時等式也成立.(10分)根據(jù)(1)和(2),可知等式對任何n∈N*都成立.(12分)39.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C40.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.41.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D42.下列語句是命題的是______.

①求證3是無理數(shù);

②x2+4x+4≥0;

③你是高一的學(xué)生嗎?

④一個正數(shù)不是素數(shù)就是合數(shù);

⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.43.書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,∴從中任取一本,不同的取法有5+4+5=14種故選A.44.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B45.如果關(guān)于x的不等式組有解,那么實數(shù)a的取值范圍(

A.(-∞,-3)∪(1,+∞)

B.(-∞,-1)∪(3,+∞)

C.(-1,3)

D.(-3,1)答案:C46.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F

是棱CD上的動點.

(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點F是CD的中點時,D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時,F(xiàn)是CD的中點,F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個法向量為m=(0,0,1),設(shè)平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因為當(dāng)把m,n都移向這個二面角內(nèi)一點時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因為BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.47.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標(biāo)原點.已知OP1=(1,0),則OP2010的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項,1為公差的等差數(shù)列∴OP2010的坐標(biāo)為(1,2009)故為(1,2009)48.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.49.在區(qū)間[-1,1]上任取兩個數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[

]A.

B.

C.

D.答案:A50.把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點所構(gòu)成的圖形是

______.答案:把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構(gòu)成的圖形是半徑為1的圓.第2卷一.綜合題(共50題)1.在復(fù)平面內(nèi),記復(fù)數(shù)3+i對應(yīng)的向量為OZ,若向量OZ饒坐標(biāo)原點逆時針旋轉(zhuǎn)60°得到向量OZ所對應(yīng)的復(fù)數(shù)為______.答案:向量OZ饒坐標(biāo)原點逆時針旋轉(zhuǎn)60°得到向量所對應(yīng)的復(fù)數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.2.(1)把二進(jìn)制數(shù)化為十進(jìn)制數(shù);(2)把化為二進(jìn)制數(shù).答案:(1)45,(2)解析:(1)先把二進(jìn)制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進(jìn)制的運算規(guī)則計算出結(jié)果;(2)根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..3.參數(shù)方程(0<θ<2π)表示()

A.雙曲線的一支,這支過點(1,)

B.拋物線的一部分,這部分過(1,)

C.雙曲線的一支,這支過點(-1,)

D.拋物線的一部分,這部分過(-1,)答案:B4.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總運費與總存儲費用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運費為4萬元/次,一年的總存儲費用為4x萬元,一年的總運費與總存儲費用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運費與總存儲費用之和最小.故為:20.5.直三棱柱ABC-A1B1C1

中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.6.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()

A.

B.

C.

D.2答案:A7.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計的一個程序空白框圖,將空白處補上.

①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計的一個程序,由于第一次執(zhí)行循環(huán)時的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計數(shù)變量i為2,步長為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.8.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.9.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.510.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C11.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x12.(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.13.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提都錯導(dǎo)致結(jié)論錯答案:A14.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:

①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).給出以下四個結(jié)論:

(1)f(1,2)=3;

(2)f(1,5)=9;

(3)f(5,1)=16;

(4)f(5,6)=26.其中正確的為______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正確(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正確(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正確(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正確故為(1)(2)(3)(4)15.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.16.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.17.長為3的線段AB的端點A、B分別在x軸、y軸上移動,,則點C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C18.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B19.選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π20.在直角坐標(biāo)系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實數(shù)m=______.答案:把AB、AC平移,使得點A與原點重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時,AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時,AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時,AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或021.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(

A.散點圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A22.某計算機(jī)程序每運行一次都隨機(jī)出現(xiàn)一個五位的二進(jìn)制數(shù)A=

,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運行一次時,ξ的數(shù)學(xué)期望Eξ=()

A.

B.

C.

D.答案:C23.隨機(jī)變量ξ的分布列為

ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.24.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D25.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()

A.40

B.80

C.160

D.320答案:B26.正態(tài)曲線下、橫軸上,從均值到+∞的面積為______答案:由正態(tài)曲線的對稱性特點知,曲線與x軸之間的面積為1,所以從均數(shù)到的面積為整個面積的一半,即50%.填:0.5.27.畫出《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖示意圖如下:28.若關(guān)于x的一元二次實系數(shù)方程x2+px+q=0有一個根為1+i(i是虛數(shù)單位),則p+q的值是()

A.-1

B.0

C.2

D.-2答案:B29.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.30.如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.

(1)求證:直線AB是⊙O的切線;

(2)若tan∠CED=12,⊙O的半徑為3,求OA的長.答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).31.將程序補充完整

INPUT

x

m=xMOD2

IF______THEN

PRINT“x是偶數(shù)”

ELSE

PRINT“x是奇數(shù)”

END

IF

END.答案:本程序的作用是判斷出輸入的數(shù)是奇數(shù)還是偶數(shù),由其邏輯關(guān)系知,若邏輯是“是”則輸出“x是偶數(shù)”,若邏輯是“否”,則輸出“x是奇數(shù)”故判斷條件應(yīng)為m=0故為m=032.有一個正四棱錐,它的底面邊長與側(cè)棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小邊長應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開時如圖所示:分析易知當(dāng)以PP′為正方形的對角線時,所需正方形的包裝紙的面積最小,此時邊長最小.設(shè)此時的正方形邊長為x則:(PP′)2=2x2,又因為PP′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A33.設(shè)甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;

乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術(shù)評定情況是()

A.甲比乙好

B.乙比甲好

C.甲、乙一樣好

D.難以確定答案:B34.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()

A.10

B.20

C.40

D.50答案:C35.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D36.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長分別為|a|、|b|、|c|的三角形()

A.是銳角三角形

B.是直角三角形

C.是鈍角三角形

D.不存在答案:B37.(坐標(biāo)系與參數(shù)方程)

從極點O作直線與另一直線ρcosθ=4相交于點M,在OM上取一點P,使OM?OP=12.

(1)求點P的軌跡方程;

(2)設(shè)R為直線ρcosθ=4上任意一點,試求RP的最小值.答案:(1)設(shè)動點P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點坐標(biāo)為(3,0),易得RP的最小值為138.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()

A.

B.2

C.4

D.12答案:B39.當(dāng)a>0時,設(shè)命題P:函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對任意x∈R都成立.若“P且Q”是真命題,則實數(shù)a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;∴f′(x)≥0在區(qū)間(1,2)上恒成立,∴1-ax2≥0在區(qū)間(1,2)上恒成立,即a≤x2在區(qū)間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實數(shù)a的取值范圍是0<a≤1.故選A.40.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點,n=(1,1,1),則以n為方向向量的直線l與平面ABC的關(guān)系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.41.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、4642.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()

A.4

B.15

C.7

D.3答案:D43.對某種電子元件進(jìn)行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C44.不等式x+x3≥0的解集是(

)。答案:{x|x≥0}45.在空間直角坐標(biāo)系中,點,過點P作平面xOy的垂線PQ,則Q的坐標(biāo)為()

A.

B.

C.

D.答案:D46.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C47.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據(jù)向量在另一個向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:248.設(shè)直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()

A.±

B.±2

C.±2

D.±4答案:B49.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°50.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范圍是[-22,22].(10分)第3卷一.綜合題(共50題)1.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C2.四支足球隊爭奪冠、亞軍,不同的結(jié)果有()

A.8種

B.10種

C.12種

D.16種答案:C3.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設(shè)正確的是()

A.a(chǎn)3<b3

B.a(chǎn)3<b3或a3=b3

C.a(chǎn)3<b3且a3=b3

D.a(chǎn)3>b3答案:B4.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標(biāo)是

______.答案:根據(jù)拋物線方程可求得焦點坐標(biāo)為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標(biāo)是(±6,9)故為:(±6,9)5.已知曲線,

θ∈[0,2π)上一點P到點A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C6.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()

A.3個

B.4個

C.6個

D.8個答案:C7.某批n件產(chǎn)品的次品率為1%,現(xiàn)在從中任意地依次抽出2件進(jìn)行檢驗,問:

(1)當(dāng)n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)

(2)根據(jù)(1),談?wù)勀銓Τ瑤缀畏植寂c二項分布關(guān)系的認(rèn)識.答案:(1)當(dāng)n=100時,如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產(chǎn)品中次品數(shù)為1,正品數(shù)是99,從100件產(chǎn)品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當(dāng)n=1000時,如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產(chǎn)品中次品數(shù)為10,正品數(shù)是990,從1000件產(chǎn)品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產(chǎn)品中次品數(shù)為1000,正品數(shù)是9000,從10000件產(chǎn)品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關(guān)系的認(rèn)識:共同點:每次試驗只有兩種可能的結(jié)果:成功或失敗.不同點:1、超幾何分布是不放回抽取,二項分布是放回抽??;

2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯(lián)系:當(dāng)產(chǎn)品的總數(shù)很大時,超幾何分布近似于二項分布.8.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.9.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.10.(1+x)6的各二項式系數(shù)的最大值是______.答案:根據(jù)二項展開式的性質(zhì)可得,(1+x)6的各二項式系數(shù)的最大值C36=20故為:2011.點M的直角坐標(biāo)是(,-1),在ρ≥0,0≤θ<2π的條件下,它的極坐標(biāo)是()

A.(2,)

B.(2,)

C.(,)

D.(,)答案:A12.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B13.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號同學(xué)同意第j號同學(xué)當(dāng)選.0,第i號同學(xué)不同意第j號同學(xué)當(dāng)選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學(xué)當(dāng)選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學(xué)生是否同意第1號同學(xué)當(dāng)選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號同學(xué)當(dāng)選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學(xué)當(dāng)選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學(xué)當(dāng)選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.14.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.15.若隨機(jī)變量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故為:31616.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B17.點(2,-2)的極坐標(biāo)為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).18.已知正數(shù)x,y,z滿足5x+4y+3z=10.

(1)求證:25x

24y+3z+16y23z+5x+9z25x+4y≥5;

(2)求9x2+9y2+z2的最小值.答案:(1)根據(jù)柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因為5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據(jù)均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當(dāng)且僅當(dāng)x2=y2+z2時,等號成立.根據(jù)柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即

(x2+y2+z2)≥2,當(dāng)且僅當(dāng)x5=y4=z3時,等號成立.綜上,9x2+9y2+z2≥2?32=18.19.若f(x)是定義在R上的函數(shù),滿足對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.20.設(shè)拋物線y2=8x上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準(zhǔn)線為x=-2,∵點P到y(tǒng)軸的距離是4,∴到準(zhǔn)線的距離是4+2=6,根據(jù)拋物線的定義可知點P到該拋物線焦點的距離是6故選B21.一個口袋內(nèi)有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續(xù)下去,直到取出的球是白球為止.求取到白球所需的次數(shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256

P(ξ=1)=3256

∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925622.設(shè)f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)當(dāng)n=1,2,3,4時,比較f(n)與g(n)的大?。?/p>

(2)根據(jù)(1)的結(jié)果猜測一個一般性結(jié)論,并加以證明.答案:(1)當(dāng)n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當(dāng)n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當(dāng)n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當(dāng)n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時也成立,∴當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.23.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點,每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.24.在極坐標(biāo)系中,曲線ρ=4cosθ圍成的圖形面積為()

A.π

B.4

C.4π

D.16答案:C25.若雙曲線與橢圓x216+y225=1有相同的焦點,與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)26.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個單位y=(13)x+1上移2個單位y=(13)x+1+2.27.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時兩條直線平行,當(dāng)k≠3時有2=-24-k≠3

所以

k=5故為:3或5.28.位于直角坐標(biāo)原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點P移動五次后位于點(1,0)的概率是()

A.

B.

C.

D.答案:D29.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是

______,過這個圓外一點P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.30.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:031.春天到了,曲曲折折的荷塘上面,彌望的是田田的葉子,已知每一天荷葉覆蓋水面的面積是前一天的2倍,若荷葉20天可以完全長滿池塘水面,當(dāng)荷葉剛好覆蓋水面面積的一半時,荷葉已生長了()A.10天B.15天C.19天D.20天答案:設(shè)荷葉覆蓋水面的初始面積為a,則x天后荷葉覆蓋水面的面積y=a?2x(x∈N+),根據(jù)題意,令2(a?2x)=a?220,解得x=19,故選C.32.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π633.若4名學(xué)生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數(shù)字作答)答案:4名學(xué)生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應(yīng)先取兩個老師且綁定有C23×A22=6種方法,第二步將四名學(xué)生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個元素,插入四個學(xué)生隔開的五個空中,共有A25=20種方法故總的站法有6×24×20=2880種故為288034.用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設(shè)正確的是()

A.假設(shè)至少有一個鈍角

B.假設(shè)沒有一個鈍角

C.假設(shè)至少有兩個鈍角

D.假設(shè)沒有一個鈍角或至少有兩個鈍角答案:C35.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C36.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數(shù)字作答)答案:由題意知本題是一個分類計數(shù)問題,要求至少女生與男生各有一名有兩個種不同的結(jié)果,即一個女生兩個男生和一個男生兩個女生,∴共有C31C42+C32C41=30種結(jié)果,故為:3037.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,

cos〈,〉=.

(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點E的坐標(biāo);

(2)在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論