2023年保山中醫(yī)藥高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年保山中醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年保山中醫(yī)藥高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年保山中醫(yī)藥高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年保山中醫(yī)藥高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年保山中醫(yī)藥高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.柱坐標(biāo)(2,,5)對應(yīng)的點的直角坐標(biāo)是

。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對應(yīng)直角坐標(biāo)是()2.若方程mx2+(m+1)x+m=0有兩個不相等的實根,則實數(shù)m的取值范圍是()

A.m>0

B.-<m<1

C.-<m<0或0<m<1

D.不確定答案:C3.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B4.5本不同的書全部分給3個學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B5.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務(wù),它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A6.下列圖象中不能作為函數(shù)圖象的是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應(yīng),這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應(yīng)1或2個y故選B.7.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C8.(1)在數(shù)軸上求一點的坐標(biāo),使它到點A(9)與到點B(-15)的距離相等;

(2)在數(shù)軸上求一點的坐標(biāo),使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設(shè)該點為M(x),根據(jù)題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結(jié)合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標(biāo)為-3故所求點的坐標(biāo)為-3.(2)設(shè)該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據(jù)題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標(biāo)是-21或-5.9.某校為提高教學(xué)質(zhì)量進行教改實驗,設(shè)有試驗班和對照班.經(jīng)過兩個月的教學(xué)試驗,進行了一次檢測,試驗班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.10.(幾何證明選做題)若A,B,C是⊙O上三點,PC切⊙O于點C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為______.答案:∵PC切⊙O于點C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°11.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.12.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點,∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°13.已知一9行9列的矩陣中的元素是由互不相等的81個數(shù)組成,a11a12…a19a21a22…a29…………a91a92…a99若每行9個數(shù)與每列的9個數(shù)按表中順序分別構(gòu)成等差數(shù)列,且正中間一個數(shù)a55=7,則矩陣中所有元素之和為______.答案:∵每行9個數(shù)按從左至右的順序構(gòu)成等差數(shù)列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9個數(shù)按從上到下的順序也構(gòu)成等差數(shù)列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有數(shù)之和為81a55=567,故為567.14.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48315.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()

A.1條

B.2條

C.3條

D.4條答案:B16.已知e1

,

e2是夾角為60°的兩個單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:717.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時,|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.18.從單詞“equation”選取5個不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個B.480個C.720個D.840個答案:要選取5個字母時首先從其它6個字母中選3個有C63種結(jié)果,再與“qu“組成的一個元素進行全排列共有C63A44=480,故選B.19.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(dāng)(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.20.9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有()

A.140種

B.84種

C.70種

D.35種答案:C21.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或622.圓的極坐標(biāo)方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標(biāo)是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標(biāo)是(1,-π3).故為(1,-π3).23.如圖,直線AB是平面α的斜線,A為斜足,若點P在平面α內(nèi)運動,使得點P到直線AB的距離為定值a(a>0),則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點P到直線AB的距離為定值a,所以,P點在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點P在平面α內(nèi)運動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.24.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運貨物,經(jīng)測算從M到A,B修建公路的費用均為a萬元/km,那么修建這兩條公路的總費用最低是(單位萬元)()

A.(2+)a

B.5a

C.2(+1)a

D.6a

答案:B25.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D26.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域為R,選項中A,D定義域不是R,是A、D不正確.選項C的對應(yīng)法則不同,C不正確.故選B.27.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.28.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7229.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:730.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B31.某校有學(xué)生1

200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.32.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C33.曲線(t為參數(shù))上的點與A(-2,3)的距離為,則該點坐標(biāo)是()

A.(-4,5)

B.(-3,4)或(-1,2)

C.(-3,4)

D.(-4,5)或(0,1)答案:B34.甲、乙兩位同學(xué)都參加了由學(xué)校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標(biāo)準(zhǔn)差分別為5.09和3.72,則甲、乙兩同學(xué)在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()

A.甲

B.乙

C.甲、乙相同

D.不能確定答案:B35.點(1,2)到原點的距離為()

A.1

B.5

C.

D.2答案:C36.如圖所示,已知點P為菱形ABCD外一點,且PA⊥面ABCD,PA=AD=AC,點F為PC中點,則二面角CBFD的正切值為()

A.

B.

C.

D.

答案:D37.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設(shè)平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設(shè)AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.38.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故為7.39.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于

______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.40.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標(biāo)是()

A.±

B.±

C.±

D.±答案:A41.設(shè)z∈C,|z|≤2,則點Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點Z表示的圖形是半徑為2的圓面,故選B42.如圖,在直角坐標(biāo)系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數(shù)),平面上的點P滿足PA+PB=6m.

(1)試求點P的軌跡C1的方程;

(2)若點(x,y)在曲線C1上,求證:點(x3,y22)一定在某圓C2上;

(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.答案:(1)由題意可得點P的軌跡C1是以A,B為焦點的橢圓.…(2分)且半焦距長c=m,長半軸長a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因為點N恰好是線段CM的中點,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)43.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.44.隨機變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P()的值為()

A.

B.

C.

D.

答案:D45.已知兩個力F1,F(xiàn)2的夾角為90°,它們的合力大小為20N,合力與F1的夾角為30°,那么F1的大小為()A.103NB.10

NC.20

ND.102N答案:設(shè)向F1,F(xiàn)2的對應(yīng)向量分別為OA、OB以O(shè)A、OB為鄰邊作平行四邊形OACB如圖,則OC=OA+OB,對應(yīng)力F1,F(xiàn)2的合力∵F1,F(xiàn)2的夾角為90°,∴四邊形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故選:A46.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(

A.ex+2+3

B.ex+2-3

C.ex-2+3

D.ex-2-3答案:C47.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A48.若以(y+2)2=4(x-1)上任一點P為圓心作與y軸相切的圓,那么這些圓必定過平面內(nèi)的點()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在這樣的點答案:C49.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.50.某人從家乘車到單位,途中有3個交通崗?fù)ぃ僭O(shè)在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數(shù)的期望為()

A.0.4

B.1.2

C.0.43

D.0.6答案:B第2卷一.綜合題(共50題)1.方程組的解集是[

]A.{5,1}

B.{1,5}

C.{(5,1)}

D.{(1,5)}答案:C2.高二年級某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.3.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C4.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標(biāo)方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.5.設(shè)a=log

132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故選D.6.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B7.在曲線(t為參數(shù))上的點是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A8.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:19.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設(shè)錯誤,(2)的假設(shè)正確

B.(1)與(2)的假設(shè)都正確

C.(1)的假設(shè)正確,(2)的假設(shè)錯誤

D.(1)與(2)的假設(shè)都錯誤答案:A10.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長軸在x軸上的橢圓

B.長軸在y軸上的橢圓

C.實軸在x軸上的雙曲線

D.實軸在y軸上的雙曲線答案:D11.

已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B12.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1513.已知圖形F上的點A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(

)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點坐標(biāo)代入可得B,點的坐標(biāo)為.所以選D.14.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數(shù),故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.15.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點,則P點的坐標(biāo)是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點公式可得OP=12(OA+OB)=(3,1),故P點的坐標(biāo)是(3,1),故選B.16.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3317.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標(biāo)

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A18.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)600到OD,則PD的長為()

A.3

B.

C.

D.

答案:D19.某總體容量為M,其中帶有標(biāo)記的有N個,現(xiàn)用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標(biāo)記的個數(shù)估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標(biāo)記的魚所占比例是NM,故樣本中帶有標(biāo)記的個數(shù)估計為mNM,故選A.20.設(shè)a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當(dāng)且僅當(dāng)a=b=c時,等號成立.21.直線2x-3y+10=0的法向量的坐標(biāo)可以是答案:C22.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D23.橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F(xiàn)1,F(xiàn)2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經(jīng)橢圓壁反彈后再回到點F1時,小球經(jīng)過的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B24.如圖,在復(fù)平面內(nèi),點A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對應(yīng)的點是()A.AB.BC.CD.D答案:兩個復(fù)數(shù)是共軛復(fù)數(shù),兩個復(fù)數(shù)的實部相同,下部相反,對應(yīng)的點關(guān)于x軸對稱.所以點A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點是B.故選B.25.點P(2,5)關(guān)于直線x+y=1的對稱點的坐標(biāo)是(

)。答案:(-4,-1)26.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.27.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側(cè),F(xiàn)為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時P點坐標(biāo)為(14,-1).…(12分).28.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于S4的概率是()A.13B.12C.34D.14答案:記事件A={△PBC的面積大于S4},基本事件空間是線段AB的長度,(如圖)因為S△PBC>S4,則有12BC?PE>14×12BC?AD;化簡記得到:PEAD>14,因為PE平行AD則由三角形的相似性PEAD>14;所以,事件A的幾何度量為線段AP的長度,因為AP=34AB,所以△PBC的面積大于S4的概率=APAB=34.故選C.29.如圖,在△ABC中,D是AC的中點,E是BD的中點,AE交BC于F,則的值等于()

A.

B.

C.

D.

答案:A30.若集合A={1,2,3},則集合A的真子集共有()A.3個B.5個C.7個D.8個答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選C.31.用反證法證明“a>b”時,反設(shè)正確的是()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.以上都不對答案:D32.一個算法的流程圖如圖所示,則輸出S的值為

.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.33.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.34.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)35.圓柱的底面積為S,側(cè)面展開圖為正方形,那么這個圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設(shè)圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側(cè)面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.36.與雙曲線x2-y24=1有共同的漸近線,且過點(2,2)的雙曲線的標(biāo)準(zhǔn)方程為______.答案:設(shè)雙曲線方程為x2-y24=λ∵過點(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=137.四面體ABCD中,設(shè)M是CD的中點,則化簡的結(jié)果是()

A.

B.

C.

D.答案:A38.已知直線l:ax+by=1(ab>0)經(jīng)過點P(1,4),則l在兩坐標(biāo)軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經(jīng)過點P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標(biāo)軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當(dāng)且僅當(dāng)4ba=ab時,取等號,故為9.39.已知一個幾何體是由上下兩部分構(gòu)成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(

)答案:A40.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形41.已知二階矩陣A=2ab0屬于特征值-1的一個特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.42.若向量,則這兩個向量的位置關(guān)系是___________。答案:垂直43.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點到直線的距離公式,得+d=|1+1|5=255.故為255.44.已知O、A、M、B為平面上四點,且,則()

A.點M在線段AB上

B.點B在線段AM上

C.點A在線段BM上

D.O、A、M、B四點一定共線答案:B45.(每題6分共12分)解不等式

(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數(shù)式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當(dāng)8-x<0顯然成立。當(dāng)8-x》0時,則兩邊平方可得。所以46.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.47.不等式﹣2x+1>0的解集是(

).答案:{x|x<}48.對于空間中的三個向量,

,它們一定是()

A.共面向量

B.共線向量

C.不共面向量

D.以上均不對答案:A49.如圖,已知PA是圓O的切線,切點為A,PO交圓O于B、C兩點,PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點,PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據(jù)正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°50.從集合M={1,2,3,…,10}選出5個數(shù)組成的子集,使得這5個數(shù)的任兩個數(shù)之和都不等于11,則這樣的子集有______個.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個不同的數(shù)組成子集,就是從這5組中分別取一個數(shù),而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個故為:32第3卷一.綜合題(共50題)1.參數(shù)方程中當(dāng)t為參數(shù)時,化為普通方程為(

)。答案:x2-y2=12.設(shè)a,b,c是三個不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個基底,則可以選擇的向量為______.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)3.已知x,y的取值如下表:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標(biāo)為(2,92).故為:(2,92).4.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()

A.

B.

C.

D.答案:B5.下列給出的輸入語句、輸出語句和賦值語句

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)賦值語句3=B

(4)賦值語句A=B=2

則其中正確的個數(shù)是()

A.0個

B.1個

C.2個

D.3個答案:A6.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:1618或13827.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.8.方程組的解集是(

)答案:{(5,-4)}9.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填12410.拋物線x=14ay2的焦點坐標(biāo)為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點坐標(biāo)是(a,0)故選B.11.將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.12.某項考試按科目A、科目B依次進行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為23,科目B每次考試成績合格的概率均為12.假設(shè)各次考試成績合格與否均互不影響.

(Ⅰ)求他不需要補考就可獲得證書的概率;

(Ⅱ)在這項考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補考合格”為事件B2.(Ⅰ)不需要補考就獲得證書的事件為A1?B1,注意到A1與B1相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨立性與互斥性,根據(jù)相互獨立事件同時發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.13.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時,從“n=k到n=k+1”時,左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時,左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時,左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).14.已知向量,,若與共線,則的值為

A

B

C

D

答案:D解析:,,由,得15.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④16.下表為廣州亞運會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類比賽的門票。比賽項目票價(元/場)足球

籃球

乒乓球100

80

60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類比賽門票,其中籃球比賽門票數(shù)與乒乓球比賽門票數(shù)相同,且籃球比賽門票的費用不超過足球比賽門票的費用,求可以預(yù)訂的足球比賽門票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門票數(shù)與乒乓球比賽門票數(shù)都是n(n∈N*)張,則足球比賽門票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門票5張。17.已知0<a<2,復(fù)數(shù)z的實部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.18.①點P在△ABC所在的平面內(nèi),且②點P為△ABC內(nèi)的一點,且使得取得最小值;③點P是△ABC所在平面內(nèi)一點,且,上述三個點P中,是△ABC的重心的有()

A.0個

B.1個

C.2個

D.3個答案:D19.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()

A.

B.

C.

D.答案:A20.在空間直角坐標(biāo)系中,已知A,B兩點的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.21.從甲乙丙三人中任選兩名代表,甲被選中的概率為()A.12B.13C.23D.1答案:從3個人中選出2個人當(dāng)代表,則所有的選法共有3種,即:甲乙、甲丙、乙丙,其中含有甲的選法有兩種,故甲被選中的概率是23,故選C.22.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關(guān)系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.23.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復(fù)數(shù)z為純虛數(shù).故為:2.24.方程(x2-9)2(x2-y2)2=0表示的圖形是()

A.4個點

B.2個點

C.1個點

D.四條直線答案:D25.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}26.命題“三角形中最多只有一個內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個內(nèi)角是直角

B.有三個內(nèi)角是直角

C.至少有兩個內(nèi)角是直角

D.沒有一個內(nèi)角是直角答案:C27.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有

EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.28.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()

A.40

B.80

C.160

D.320答案:B29.若根據(jù)10名兒童的年齡

x(歲)和體重

y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報體重的回歸方程是

y=2x+7,已知這10名兒童的年齡分別是

2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C30.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負相關(guān)

D.變量x

與y

負相關(guān),u

與v

負相關(guān)答案:B31.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.32.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。33.若函數(shù),則下列結(jié)論正確的是(

)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時有是一個偶函數(shù)34.已知x與y之間的一組數(shù)據(jù):

x0123y1357則y與x的線性回歸方程為y=bx+a必過點______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(1.5,4)故為:(1.5,4)35.求下列函數(shù)的定義域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域為{x|x≠-14}.設(shè)y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域為{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域為{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論