2023年中山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年中山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年中山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年中山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年中山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年中山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知F是拋物線C:y2=4x的焦點(diǎn),過(guò)F且斜率為1的直線交C于A,B兩點(diǎn).設(shè)|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設(shè)A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+222.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為_(kāi)_____.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.3.某校為提高教學(xué)質(zhì)量進(jìn)行教改實(shí)驗(yàn),設(shè)有試驗(yàn)班和對(duì)照班.經(jīng)過(guò)兩個(gè)月的教學(xué)試驗(yàn),進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績(jī)統(tǒng)計(jì)如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計(jì)試驗(yàn)班321850對(duì)照班12m50合計(jì)4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.4.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B5.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是()

A.一條直線

B.兩條直線

C.圓

D.橢圓答案:C6.隨機(jī)變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P()的值為()

A.

B.

C.

D.

答案:D7.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()

A.A88

B.A55A44

C.A44A44

D.A85答案:B8.5本不同的書全部分給3個(gè)學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B9.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實(shí)數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(shí)(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)10.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個(gè)數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個(gè)數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.11.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個(gè)數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81

243=81×3+0

則324與243的最大公約數(shù)為81又135=81×1+54

81=54×1+27

54=27×2+0則81與135的最大公約數(shù)為27所以,三個(gè)數(shù)324、243、135的最大公約數(shù)為27.另法為所求。12.已知a、b、c是△ABC的三邊,且關(guān)于x的二次方程x2-2x+lg(c2-b2)-2lga+1=0有等根,判斷△ABC的形狀.答案:解:∵方程有等根,∴Δ=4-4[lg(c2-b2)-2lga+1]=4-4lg=0,∴l(xiāng)g=1,∴=10,∴c2-b2=a2,即a2+b2=c2,∴△ABC為直角三角形.13.設(shè)點(diǎn)P(,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()

A.3

B.5

C.

D.答案:D14.設(shè)O為坐標(biāo)原點(diǎn),給定一個(gè)定點(diǎn)A(4,3),而點(diǎn)B(x,0)在x正半軸上移動(dòng),l(x)表示AB的長(zhǎng),則△OAB中兩邊長(zhǎng)的比值的最大值為()

A.

B.

C.

D.答案:B15.已知的單調(diào)區(qū)間;

(2)若答案:(1)(2)證明略解析:(1)對(duì)已知函數(shù)進(jìn)行降次分項(xiàng)變形

,得,(2)首先證明任意事實(shí)上,而

.16.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長(zhǎng)軸在x軸上的橢圓

B.長(zhǎng)軸在y軸上的橢圓

C.實(shí)軸在x軸上的雙曲線

D.實(shí)軸在y軸上的雙曲線答案:D17.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C18.如圖示程序運(yùn)行后的輸出結(jié)果為_(kāi)_____.答案:該程序的作用是求數(shù)列ai=2i+3中滿足條件的ai的值∵最終滿足循環(huán)條件時(shí)i=9∴ai的值為21故為:2119.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.20.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.21.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.22.已知:如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,DC的延長(zhǎng)線交AB于點(diǎn)A,∠A=20°,則

∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.23.i為虛數(shù)單位,復(fù)數(shù)z=i(1-i),則.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵復(fù)數(shù)z=i(1-i)=1+i,則.z=1-i,它在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,-1),故.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,故選D.24.想要檢驗(yàn)是否喜歡參加體育活動(dòng)是不是與性別有關(guān),應(yīng)該檢驗(yàn)()

A.H0:男性喜歡參加體育活動(dòng)

B.H0:女性不喜歡參加體育活動(dòng)

C.H0:喜歡參加體育活動(dòng)與性別有關(guān)

D.H0:喜歡參加體育活動(dòng)與性別無(wú)關(guān)答案:D25.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長(zhǎng)等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個(gè)法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個(gè)法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3326.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ27.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計(jì)算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.28.給出下列四個(gè)命題:

①若兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;

②在平行四邊形ABCD中,一定有;

③若則

④若則

其中正確的命題個(gè)數(shù)是()

A.1

B.2

C.3

D.4答案:C29.雙曲線x29-y216=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為_(kāi)_____.答案:設(shè)點(diǎn)P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.30.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個(gè)焦點(diǎn)是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過(guò)焦點(diǎn)F2的直線l的一個(gè)法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.

(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得∠AOB為銳角?若存在,請(qǐng)求出m的范圍;若不存在,請(qǐng)說(shuō)明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點(diǎn)M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實(shí)數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因?yàn)閥1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在31.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點(diǎn)A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.32.某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答問(wèn)題者進(jìn)入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問(wèn)題的概率分別為、、、,且各輪問(wèn)題能否正確回答互不影響.

(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問(wèn)題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.33.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為_(kāi)_____.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.34.已知空間三點(diǎn)的坐標(biāo)為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點(diǎn)共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點(diǎn)共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;235.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B36.以雙曲線x24-y216=1的右焦點(diǎn)為圓心,且被其漸近線截得的弦長(zhǎng)為6的圓的方程為_(kāi)_____.答案:雙曲線x24-y216=1的右焦點(diǎn)為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長(zhǎng)為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.37.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對(duì)其中6題,乙能答對(duì)其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.38.

以下四組向量中,互相平行的有()組.

A.一

B.二

C.三

D.四答案:D39.集合{0,1}的子集有()個(gè).A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個(gè),故選D.40.在空間有三個(gè)向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.41.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C42.一張紙上畫有一個(gè)半徑為R的圓O和圓內(nèi)一個(gè)定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A′剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A′取遍圓周上所有點(diǎn)時(shí),求所有折痕所在直線上點(diǎn)的集合.答案:對(duì)于⊙O上任意一點(diǎn)A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點(diǎn)P,則OP+PA=OA′=R.由于點(diǎn)A在⊙O內(nèi),故OA=a<R.從而當(dāng)點(diǎn)A′取遍圓周上所有點(diǎn)時(shí),點(diǎn)P的軌跡是以O(shè)、A為焦點(diǎn),OA=a為焦距,R(R>a)為長(zhǎng)軸的橢圓C.而MN上任一異于P的點(diǎn)Q,都有OQ+QA=OQ+QA′>OA′,故點(diǎn)Q在橢圓C外,即折痕上所有的點(diǎn)都在橢圓C上及C外.反之,對(duì)于橢圓C上或外的一點(diǎn)S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°

當(dāng)S在⊙O外時(shí),由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°

當(dāng)S在⊙O內(nèi)時(shí)(例如在⊙O內(nèi),但在橢圓C外或其上的點(diǎn)S′),取過(guò)S′的半徑OD,則由點(diǎn)S′在橢圓C外,故OS′+S′A≥R(橢圓的長(zhǎng)軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點(diǎn).于是上述證明成立.綜上可知,折痕上的點(diǎn)的集合為橢圓C上及C外的所有點(diǎn)的集合.43.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長(zhǎng)為_(kāi)_____.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時(shí),x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時(shí),有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時(shí),有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.44.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級(jí)高個(gè)子學(xué)生B.校園中長(zhǎng)的高大的樹(shù)木C.2013年1月風(fēng)度中學(xué)高一級(jí)在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無(wú)序性.所以A、B、D都不是集合,元素不確定;故選C.45.

008年北京成功舉辦了第29屆奧運(yùn)會(huì),中國(guó)取得了51金、21銀、28銅的驕人成績(jī).下表為北京奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類比賽的門票:

比賽項(xiàng)目

票價(jià)(元/場(chǎng))

籃球

1000

足球

800

乒乓球

500

若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費(fèi)用不超過(guò)男籃門票的費(fèi)用,則可以預(yù)訂男籃門票數(shù)為

A.2

B.3

C.4

D.5

答案:D46.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()

A.7

B.8

C.9

D.10答案:B47.某校有初中學(xué)生1200人,高中學(xué)生900人,教師120人,現(xiàn)用分層抽樣方法從所有師生中抽取一個(gè)容量為n的樣本進(jìn)行調(diào)查,如果從高中學(xué)生中抽取60人,那么n=______.答案:每個(gè)個(gè)體被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故為:148.48.回歸直線方程必定過(guò)點(diǎn)()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過(guò)這組數(shù)據(jù)的樣本中心點(diǎn),∴線性回歸方程y=bx+a表示的直線必經(jīng)過(guò)(.x,.y).故選D.49.若向量且與的夾角余弦為則λ等于()

A.4

B.-4

C.

D.答案:C50.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無(wú)法確定

答案:B第2卷一.綜合題(共50題)1.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A2.下列給出的輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句

(1)輸出語(yǔ)句INPUT

a;b;c

(2)輸入語(yǔ)句INPUT

x=3

(3)賦值語(yǔ)句3=B

(4)賦值語(yǔ)句A=B=2

則其中正確的個(gè)數(shù)是()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:A3.(本題10分)設(shè)函數(shù)的定義域?yàn)锳,的定義域?yàn)锽.(1)求A;

(2)若,求實(shí)數(shù)a的取值范圍答案:(1);(2)。解析:略4.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,5.2008年9月25日下午4點(diǎn)30分,“神舟七號(hào)”載人飛船發(fā)射升空,其運(yùn)行的軌道是以地球的中心F為一個(gè)焦點(diǎn)的橢圓,若這個(gè)橢圓的長(zhǎng)軸長(zhǎng)為2a,離心率為e,則“神舟七號(hào)”飛船到地球中心的最大距離為_(kāi)_____.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點(diǎn)B到橢圓的焦點(diǎn)F的距離最大.最大為a+c=a+ae.故為:a+ae.6.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:

表1:

x123f(x)231表2:

x123g(x)321則方程g[f(x)]=x的解集為_(kāi)_____.答案:由題意得,當(dāng)x=1時(shí),g[f(1)]=g[2]=2不滿足方程;當(dāng)x=2時(shí),g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}7.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長(zhǎng)______.答案:設(shè)另一弦長(zhǎng)xcm;由于另一弦被分為3:8的兩段,故兩段的長(zhǎng)分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm8.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(

)。答案:x2-y2=19.用秦九韶算法求多項(xiàng)式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.10.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c11.如圖P為空間中任意一點(diǎn),動(dòng)點(diǎn)Q在△ABC所在平面內(nèi)運(yùn)動(dòng),且,則實(shí)數(shù)m=()

A.0

B.2

C.-2

D.1

答案:C12.若不等式的解集,則實(shí)數(shù)=___________.答案:-413.若下列算法的程序運(yùn)行的結(jié)果為S=132,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是

______.答案:本題考查根據(jù)程序框圖的運(yùn)算,寫出控制條件按照程序框圖執(zhí)行如下:s=1

k=12s=12

k=11s=12×11=132

k=10因?yàn)檩敵?32故此時(shí)判斷條件應(yīng)為:K≤10或K<11故為:K≤10或K<1114.已知點(diǎn)P(t,t),t∈R,點(diǎn)M是圓x2+(y-1)2=上的動(dòng)點(diǎn),點(diǎn)N是圓(x-2)2+y2=上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C15.(1)把二進(jìn)制數(shù)化為十進(jìn)制數(shù);(2)把化為二進(jìn)制數(shù).答案:(1)45,(2)解析:(1)先把二進(jìn)制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進(jìn)制的運(yùn)算規(guī)則計(jì)算出結(jié)果;(2)根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過(guò)該例,我們對(duì)比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..16.已知隨機(jī)變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C17.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.18.在直角坐標(biāo)系xoy

中,已知曲線C1:x=t+1y=1-2t(t為參數(shù))與曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

有一個(gè)公共點(diǎn)在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數(shù))化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

)化為普通方程:x2a2+y29=1∵兩曲線有一個(gè)公共點(diǎn)在x軸上,∴94a2=1∴a=32故為:3219.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.20.設(shè)O是平行四邊形ABCD的兩條對(duì)角線AC與BD的交點(diǎn),對(duì)于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫序號(hào)).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.21.如圖,在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.

(Ⅰ)若AP=λa+μb,求λ和μ的值;

(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比S平行四邊形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,∵得AP=27AB+47AC,∴S平行四邊形ANPMS平行四邊形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;22.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1

200人,女學(xué)生1

000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19223.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點(diǎn)P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點(diǎn)P一定在∠AOB平分線線上,故選A.24.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或625.已知a為常數(shù),a>0且a≠1,指數(shù)函數(shù)f(x)=ax和對(duì)數(shù)函數(shù)g(x)=logax的圖象分別為C1與C2,點(diǎn)M在曲線C1上,線段OM(O為坐標(biāo)原點(diǎn))與曲線C1的另一個(gè)交點(diǎn)為N,若曲線C2上存在一點(diǎn)P,且點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等,點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,則點(diǎn)P的坐標(biāo)為_(kāi)_____.答案:設(shè)點(diǎn)M的坐標(biāo)為(m,am),點(diǎn)N的坐標(biāo)為(n,an)∵點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等∴點(diǎn)P的坐標(biāo)為(am,m)∵點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,∴m=2n而O、M、N三點(diǎn)共線則amm=ann=

am2m2解得:am=4即m=loga4∴點(diǎn)P的坐標(biāo)為(4,loga4)故為:(4,loga4)26.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B27.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對(duì)應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d對(duì)應(yīng)密文a+2b,2b+c,2c+3d,4d,∴當(dāng)接收方收到密文14,9,23,28時(shí),則a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文為6,4,1,7故選C.28.直線2x-y=7與直線3x+2y-7=0的交點(diǎn)是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A29.一個(gè)凸多面體的各個(gè)面都是四邊形,它的頂點(diǎn)數(shù)是16,則它的面數(shù)為()

A.14

B.7

C.15

D.不能確定答案:A30.方程組的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A31.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因?yàn)锳∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故選D32.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識(shí),某中學(xué)高二年級(jí)舉辦了一次“追尋先哲的足跡,傾聽(tīng)數(shù)學(xué)的聲音”的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面的頻率分布表,解答下列問(wèn)題:

序號(hào)

(i)分組

(分?jǐn)?shù))本組中間值

(Gi)頻數(shù)

(人數(shù))頻率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

計(jì)501(1)填充頻率分布表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);

(2)為鼓勵(lì)更多的學(xué)生了解“數(shù)學(xué)史”知識(shí),成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參賽的800名學(xué)生中大概有多少同學(xué)獲獎(jiǎng)?

(3)請(qǐng)根據(jù)頻率分布表估計(jì)該校高二年級(jí)參賽的800名同學(xué)的平均成績(jī).答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎(jiǎng).(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計(jì)平均成績(jī)?yōu)?1分.(12分)33.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()

A.

B.

C.

D.1答案:A34.k取何值時(shí),一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>335.如右圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個(gè)分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41

C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41

C12

C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.36.定義集合運(yùn)算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當(dāng)x=0時(shí),z=0,當(dāng)x=1,y=2時(shí),z=6,當(dāng)x=1,y=3時(shí),z=12,故所有元素之和為18,故選D37.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為_(kāi)_____.答案:過(guò)C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.38.已知||=3,A、B分別在x軸和y軸上運(yùn)動(dòng),O為原點(diǎn),則動(dòng)點(diǎn)P的軌跡方程是()

A.

B.

C.

D.答案:B39.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D40.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個(gè)以z為根的實(shí)系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實(shí)系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個(gè)一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].41.一個(gè)完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來(lái)表示程序的開(kāi)始和結(jié)束,還要包括處理框,用來(lái)處理程序的執(zhí)行.故為:起止框、處理框.42.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問(wèn)下列哪些選項(xiàng)是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項(xiàng)錯(cuò)誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,綜上,正確的選項(xiàng)有(3)、(4).43.如圖是一個(gè)實(shí)物圖形,則它的左視圖大致為()A.

B.

C.

D.

答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實(shí)線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對(duì)角線的矩形,并且對(duì)角線在左視圖中為實(shí)線,故選D.44.圖是正方體平面展開(kāi)圖,在這個(gè)正方體中

①BM與ED垂直;

②DM與BN垂直.

③CN與BM成60°角;④CN與BE是異面直線.

以上四個(gè)命題中,正確命題的序號(hào)是______.答案:由已知中正方體的平面展開(kāi)圖,我們可以得到正方體的直觀圖如下圖所示:由正方體的幾何特征可得:①BM與ED垂直,正確;

②DM與BN垂直,正確;③CN與BM成60°角,正確;④CN與BE平行,故CN與BE是異面直線,錯(cuò)誤;故為:①②③45.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡(jiǎn)得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.46.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點(diǎn)P的坐標(biāo)為(2,1),那么()

A.點(diǎn)P在直線L上,但不在圓M上

B.點(diǎn)P在圓M上,但不在直線L上

C.點(diǎn)P既在圓M上,又在直線L上

D.點(diǎn)P既不在直線L上,也不在圓M上答案:C47.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為_(kāi)_____.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時(shí),|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時(shí),|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.48.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(

)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)49.直線l經(jīng)過(guò)點(diǎn)A(2,-1)和點(diǎn)B(-1,5),其斜率為()

A.-2

B.2

C.-3

D.3答案:A50.在用樣本頻率估計(jì)總體分布的過(guò)程中,下列說(shuō)法正確的是()A.總體容量越大,估計(jì)越精確B.總體容量越小,估計(jì)越精確C.樣本容量越大,估計(jì)越精確D.樣本容量越小,估計(jì)越精確答案:∵用樣本頻率估計(jì)總體分布的過(guò)程中,估計(jì)的是否準(zhǔn)確與總體的數(shù)量無(wú)關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計(jì)的月準(zhǔn)確,故選C.第3卷一.綜合題(共50題)1.與直線3x+4y-3=0平行,并且距離為3的直線方程為_(kāi)_____.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.2.在平面直角坐標(biāo)中,h為坐標(biāo)原點(diǎn),設(shè)向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()A.

B.

C.

D.

答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故選A.3.半徑為1、2、3的三個(gè)圓兩兩外切.證明:以這三個(gè)圓的圓心為頂點(diǎn)的三角形是直角三角形.

答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個(gè)圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.4.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D5.x+y+z=1,則2x2+3y2+z2的最小值為()

A.1

B.

C.

D.答案:C6.下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的線性回歸方程

必過(guò)點(diǎn)()

x

0

1

2

3

y

1

3

5

7

A.(2,2)

B.(1.5,2)

C.(1,2)

D.(1.5,4)答案:D7.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.8.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C9.已知圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺(tái)的體積.答案:∵圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺(tái)的體積V=13×3×(4π+4π?25π+25π)=39πcm3.10.四名志愿者和兩名運(yùn)動(dòng)員排成一排照相,要求兩名運(yùn)動(dòng)員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運(yùn)動(dòng)員站在一起,所以使用捆綁法,兩名運(yùn)動(dòng)員站在一起,有A22種情況,將其當(dāng)做一個(gè)元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計(jì)數(shù)原理,其不同的排列方法為A55A22種,故選B.11.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動(dòng)()

A.大

B.相等

C.小

D.無(wú)法確定答案:A12.在△ABC中,AB=2,BC=3,∠ABC=60°,AD為BC邊上的高,O為AD的中點(diǎn),若

=λ+μ,則λ+μ=()

A.1

B.

C.

D.答案:D13.設(shè)直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+

c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.14.直線(t為參數(shù))被圓x2+y2=9截得的弦長(zhǎng)為()

A.

B.

C.

D.答案:B15.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語(yǔ)文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語(yǔ)成績(jī),i=4表示語(yǔ)數(shù)外三門總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過(guò)一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語(yǔ)文

B.?dāng)?shù)學(xué)

C.外語(yǔ)

D.都一樣答案:B16.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.17.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C18.電視機(jī)的使用壽命顯像管開(kāi)關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開(kāi)關(guān)了10000次還能繼續(xù)使用的概率是0.96,開(kāi)關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開(kāi)關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開(kāi)關(guān)了10000次還能繼續(xù)使用”為事件A,記“開(kāi)關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.19.在空間直角坐標(biāo)系中,已知兩點(diǎn)P1(-1,3,5),P2(2,4,-3),則|P1P2|=()

A.

B.3

C.

D.答案:A20.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p21.雙曲線的中心是原點(diǎn)O,它的虛軸長(zhǎng)為26,右焦點(diǎn)為F(c,0)(c>0),直線l:x=a2c與x軸交于點(diǎn)A,且|OF|=3|OA|.過(guò)點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn).

(Ⅰ)求雙曲線的方程;

(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線PQ與x軸垂直時(shí),PQ方程為x=3.此時(shí),AP?AQ≠0,應(yīng)舍去.當(dāng)直線PQ與x軸不垂直時(shí),設(shè)直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過(guò)點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=022.已知?jiǎng)狱c(diǎn)P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動(dòng)點(diǎn)P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)(-2,0),(2,0)的距離之差等于2,由雙曲線定義知?jiǎng)狱c(diǎn)P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).23.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因?yàn)樗倪呅蔚膬?nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.24.在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,要先后實(shí)施6個(gè)程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實(shí)施時(shí)必須相鄰,請(qǐng)問(wèn)實(shí)驗(yàn)順序的編排方法共有()

A.24種

B.48種

C.96種

D.144種答案:C25.如果關(guān)于x的不等式組有解,那么實(shí)數(shù)a的取值范圍(

A.(-∞,-3)∪(1,+∞)

B.(-∞,-1)∪(3,+∞)

C.(-1,3)

D.(-3,1)答案:C26.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D27.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}28.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,A中的2個(gè)函數(shù)的值域不同,B中的2個(gè)函數(shù)的定義域不同,C中的2個(gè)函數(shù)的對(duì)應(yīng)關(guān)系不同,只有D的2個(gè)函數(shù)的定義域、值域、對(duì)應(yīng)關(guān)系完全相同,故選D.29.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時(shí),S取最大值2.30.設(shè)a,b,c是三個(gè)不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個(gè)基底,則可以選擇的向量為_(kāi)_____.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)31.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()

A.

B.

C.

D.答案:B32.若數(shù)列{an}(n∈N+)為等差數(shù)列,則數(shù)列bn=a1+a2+a3+…+ann(n∈N+)也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若數(shù)列{cn}是等比數(shù)列且cn>0(n∈N+),則有數(shù)列dn=______(n∈N+)也是等比數(shù)列.答案:從商類比開(kāi)方,從和類比到積,可得如下結(jié)論:nC1C2C3Cn故為:nC1C2C3Cn33.在同一平面直角坐標(biāo)系中,直線變成直線的伸縮變換是()A.B.C.D.答案:A解析:解:設(shè)直線上任意一點(diǎn)(x′,y′),變換前的坐標(biāo)為(x,y),則根據(jù)直線變成直線則伸縮變換是,選A34.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(

)

A.m≤1

B.0<m≤1

C.m>1

D.0<m<1答案:B35.對(duì)某種花卉的開(kāi)放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為_(kāi)_____天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:1636.關(guān)于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個(gè)數(shù)為()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:C37.已知在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為x=3+3cosθy=1+3sinθ,(θ為參數(shù)),以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為pcos(θ+π6)=0.

(1)寫出直線l的直角坐標(biāo)方程和圓C的普通方程;

(2)求圓C截直線l所得的弦長(zhǎng).答案:(1)消去參數(shù)θ,得圓C的普通方程為(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρ

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論