2023年上海中華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年上海中華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年上海中華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年上海中華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年上海中華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年上海中華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.用樣本估計(jì)總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計(jì)就越精確C.樣本容量越小,估計(jì)就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計(jì)總體時(shí),樣本容量越大,估計(jì)就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動(dòng)狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計(jì)總體的結(jié)果,但不就是總體的結(jié)果.故選B.2.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對(duì)應(yīng),則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對(duì)應(yīng),則當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=7;當(dāng)x=3時(shí),y=10;當(dāng)x=k時(shí),y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,53.命題:“如果ab=0,那么a、b中至少有一個(gè)等于0.”的逆否命題為______

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠04.如圖的矩形,長為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:2355.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α6.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因?yàn)?<a<1時(shí),y=logax為減函數(shù),所以p>m>n故選D7.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a(chǎn)=(1,0,0),n=(-2,0,0)B.a(chǎn)=(1,3,5),n=(1,0,1)C.a(chǎn)=(0,2,1),n=(-1,0,-1)D.a(chǎn)=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項(xiàng)中a?n=-3+3=0.故選D.8.設(shè)橢圓C1的離心率為513,焦點(diǎn)在x軸上且長軸長為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為

______答案:根據(jù)題意可知橢圓方程中的a=13,∵ca=513∴c=5根據(jù)雙曲線的定義可知曲線C2為雙曲線,其中半焦距為5,實(shí)軸長為8∴虛軸長為225-16=6∴雙曲線方程為x216-y29=1故為:x216-y29=19.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍

______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點(diǎn),∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.10.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.11.平面上動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離比M到直線l:x+1=0的距離大2,則動(dòng)點(diǎn)M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D12.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()

A.平行

B.垂直

C.相交但不垂直

D.不能確定答案:B13.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()

A.(0,1)

B.(0,)

C.(1,0)

D.(,0)答案:B14.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:1215.應(yīng)用反證法推出矛盾的推導(dǎo)過程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C16.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故為7.17.(坐標(biāo)系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8218.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:419.設(shè)F1,F(xiàn)2是雙曲線x29-y216=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設(shè)PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.20.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F

是棱CD上的動(dòng)點(diǎn).

(Ⅰ)試確定點(diǎn)F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時(shí),求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大小.答案:(I)由題意可得:以A為原點(diǎn),分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點(diǎn)F是CD的中點(diǎn)時(shí),D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時(shí),F(xiàn)是CD的中點(diǎn),F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個(gè)法向量為m=(0,0,1),設(shè)平面C1EF的一個(gè)法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個(gè)法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因?yàn)楫?dāng)把m,n都移向這個(gè)二面角內(nèi)一點(diǎn)時(shí),m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因?yàn)锽A1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.21.將正方形ABCD沿對(duì)角線BD折起,使平面ABD⊥平面CBD,E是CD中點(diǎn),則∠AED的大小為()

A.45°

B.30°

C.60°

D.90°答案:D22.棱長為2的正方體ABCD-A1B1C1D1中,=(

A.

B.4

C.

D.-4答案:D23.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個(gè)數(shù)的大小關(guān)系是:______(用符號(hào)“>”連接這三個(gè)字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.24.以過橢圓+=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是()

A.相交

B.相切

C.相離

D.不能確定答案:C25.已知指數(shù)函數(shù)f(x)的圖象過點(diǎn)(3,8),求f(6)的值.答案:設(shè)指數(shù)函數(shù)為:f(x)=ax,因?yàn)橹笖?shù)函數(shù)f(x)的圖象過點(diǎn)(3,8),所以8=a3,∴a=2,所求指數(shù)函數(shù)為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.26.OA、OB(O為原點(diǎn))是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點(diǎn),且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:127.已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點(diǎn),則直線x0x+y0y=r2與此圓有何種位置關(guān)系?答案:圓心O(0,0)到直線x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內(nèi),∴x20+y20<r.則有d>r,故直線和圓相離.28.兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時(shí),即A郵箱的信件數(shù)為0,由分步計(jì)數(shù)原理知兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時(shí)的概率,同理可得ξ=1時(shí),ξ=2時(shí),ξ=3時(shí)的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.29.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.30.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個(gè)特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對(duì)任意x0∈R,使x02+1≥0”故為:對(duì)任意x0∈R,使x02+1≥031.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.32.若動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)F1(-1,0)、F2(1,0)的距離之差的絕對(duì)值為定值a(0≤a≤2),試求動(dòng)點(diǎn)P的軌跡.答案:①當(dāng)a=0時(shí),||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點(diǎn)P的軌跡為直線:線段F1F2的垂直平分線.②當(dāng)a=2時(shí),||PF1|-|PF2||=2=|F1F2|,所以點(diǎn)P的軌跡為兩條射線.③當(dāng)0<a<2時(shí),||PF1|-|PF2||=a<|F1F2|,所以點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線.33.以拋物線的焦點(diǎn)弦為直徑的圓與其準(zhǔn)線的位置關(guān)系是(

A.相切

B.相交

C.相離

D.以上均有可能答案:A34.四支足球隊(duì)爭奪冠、亞軍,不同的結(jié)果有()

A.8種

B.10種

C.12種

D.16種答案:C35.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.36.集合{1,2,3}的真子集的個(gè)數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選C.37.如圖所示,已知A、B、C三點(diǎn)不共線,O為平面ABC外的一點(diǎn),若點(diǎn)M滿足

(1)判斷三個(gè)向量是否共面;

(2)判斷點(diǎn)M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個(gè)向量的基線又有公共點(diǎn)M,∴M、A、B、C共面,即點(diǎn)M在平面ABC內(nèi),38.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為______.答案:因?yàn)锳(0,4)和點(diǎn)B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-239.經(jīng)過拋物線y2=2x的焦點(diǎn)且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A40.拋擲兩枚骰子各一次,記第一枚骰子擲出的點(diǎn)數(shù)與第二枚骰子擲出的點(diǎn)數(shù)的差為X,則“X>4”表示試驗(yàn)的結(jié)果為()

A.第一枚為5點(diǎn),第二枚為1點(diǎn)

B.第一枚大于4點(diǎn),第二枚也大于4點(diǎn)

C.第一枚為6點(diǎn),第二枚為1點(diǎn)

D.第一枚為4點(diǎn),第二枚為1點(diǎn)答案:C41.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()

A.

B.

C.

D.

答案:D42.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn).

(1)求異面直線BD1與CE所成角的余弦值;

(2)求二面角A1-EC-A的余弦值.答案:以D為原點(diǎn),DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)43.一口袋內(nèi)裝有5個(gè)黃球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時(shí)停止,停止時(shí)取球的次數(shù)ξ是一個(gè)隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故為C911(38)10(58)244.直三棱柱ABC-A1B1C1中,若CA=a

CB=b

CC1=c

則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.45.我市某機(jī)構(gòu)為調(diào)查2009年下半年落實(shí)中學(xué)生“陽光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為X(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),右圖是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運(yùn)動(dòng)時(shí)間超過20分鐘的學(xué)生人數(shù),由于統(tǒng)計(jì)總?cè)藬?shù)是10000,又輸出的S=6200,故運(yùn)動(dòng)時(shí)間不超過20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B46.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200647.如果如圖所示的程序中運(yùn)行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1148.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.49.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個(gè)同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個(gè)圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π550.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.第2卷一.綜合題(共50題)1.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A2.設(shè)O、A、B、C為平面上四個(gè)點(diǎn),(

A.2

B.2

C.3

D.3答案:C3.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時(shí)將量詞對(duì)任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號(hào)≥變?yōu)椋技纯桑蕿椋捍嬖趯?shí)數(shù)x,使得x<2.4.一位運(yùn)動(dòng)員投擲鉛球的成績是14m,當(dāng)鉛球運(yùn)行的水平距離是6m時(shí),達(dá)到最大高度4m.若鉛球運(yùn)行的路線是拋物線,則鉛球出手時(shí)距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D5.用長為4、寬為2的矩形做側(cè)面圍成一個(gè)高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長為4、寬為2的矩形做側(cè)面圍成一個(gè)圓柱,且圓柱高為h=2∴底面圓周由長為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B6.已知拋物線方程為y2=2px(p>0),過該拋物線焦點(diǎn)F且不與x軸垂直的直線AB交拋物線于A,B兩點(diǎn),過點(diǎn)A,點(diǎn)B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點(diǎn),那么∠MFN必是()

A.銳角

B.直角

C.鈍角

D.以上皆有可能答案:B7.過點(diǎn)P(0,-2)的雙曲線C的一個(gè)焦點(diǎn)與拋物線x2=-16y的焦點(diǎn)相同,則雙曲線C的標(biāo)準(zhǔn)方程是()

A.

B.

C.

D.答案:C8.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點(diǎn)到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運(yùn)貨物,經(jīng)測算從M到A,B修建公路的費(fèi)用均為a萬元/km,那么修建這兩條公路的總費(fèi)用最低是(單位萬元)()

A.(2+)a

B.5a

C.2(+1)a

D.6a

答案:B9.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B10.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2004的值為()

A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個(gè)周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.11.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1012.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(

)。答案:213.在半徑為1的圓內(nèi)任取一點(diǎn),以該點(diǎn)為中點(diǎn)作弦,則所做弦的長度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點(diǎn),在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點(diǎn)必須在半徑為12圓內(nèi),則所做弦的長度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.14.已知函數(shù)f(x)=x21+x2.

(1)求f(2)與f(12),f(3)與f(13);

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分15.在面積為S的△ABC的邊AB上任取一點(diǎn)P,則△PBC的面積大于S4的概率是()A.13B.12C.34D.14答案:記事件A={△PBC的面積大于S4},基本事件空間是線段AB的長度,(如圖)因?yàn)镾△PBC>S4,則有12BC?PE>14×12BC?AD;化簡記得到:PEAD>14,因?yàn)镻E平行AD則由三角形的相似性PEAD>14;所以,事件A的幾何度量為線段AP的長度,因?yàn)锳P=34AB,所以△PBC的面積大于S4的概率=APAB=34.故選C.16.下面是一個(gè)算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時(shí),y=10x=10,得x=1;當(dāng)x>5時(shí),y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.17.甲盒子中裝有3個(gè)編號(hào)分別為1,2,3的小球,乙盒子中裝有5個(gè)編號(hào)分別為1,2,3,4,5的小球,從甲、乙兩個(gè)盒子中各隨機(jī)取一個(gè)小球,則取出兩小球編號(hào)之積為奇數(shù)的概率為______.答案:由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從兩個(gè)盒子中分別取一個(gè)小球,共有3×5=15種結(jié)果,滿足條件的事件是取出的兩個(gè)小球編號(hào)之積是奇數(shù),可以列舉出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6種結(jié)果,∴要求的概率是615=25.故為25.18.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點(diǎn),AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點(diǎn)E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因?yàn)锳E?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質(zhì)法)因?yàn)樗倪呅蜝EFC為梯形,所以BE∥CF.又因?yàn)锽E?平面DCF,CF?平面DCF,所以BE∥平面DCF.因?yàn)樗倪呅蜛BCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因?yàn)锽E和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因?yàn)锳E?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點(diǎn),∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.19.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對(duì)應(yīng)角相等;

(2)當(dāng)a>1時(shí),函數(shù)y=ax是增函數(shù).答案:(1)若兩個(gè)三角形相似,則它們的對(duì)應(yīng)角相等.條件p:三角形相似,結(jié)論q:對(duì)應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).20.在平面直角坐標(biāo)系xOy中,若拋物線C:x2=2py(p>0)的焦點(diǎn)為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點(diǎn)坐標(biāo)為(0,p2),又已知焦點(diǎn)為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.21.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.22.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.23.若一個(gè)圓錐的軸截面是邊長為4cm的等邊三角形,則這個(gè)圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.24.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C25.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時(shí),0<b<1∴a>b26.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12

≤4+2a所以,-1≤a≤3故為:-1≤a≤3.27.下列命題中,錯(cuò)誤的是()

A.平行于同一條直線的兩個(gè)平面平行

B.平行于同一個(gè)平面的兩個(gè)平面平行

C.一個(gè)平面與兩個(gè)平行平面相交,交線平行

D.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)相交答案:A28.已知點(diǎn)G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點(diǎn),且,則的值()

A.3

B.

C.2

D.答案:B29.一條直線上順次有A、B、C三點(diǎn),且|AB|=2,|BC|=3,則C分有向線段AB的比為()

A.-

B.-

C.-

D.-答案:A30.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.31.袋中有5個(gè)小球(3白2黑),現(xiàn)從袋中每次取一個(gè)球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C32.設(shè)向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B33.應(yīng)用反證法推出矛盾的推導(dǎo)過程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C34.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實(shí)數(shù)a,b,m,n的大小關(guān)系可能是()

A.m<a<b<n

B.a(chǎn)<m<n<b

C.a(chǎn)<m<b<n

D.m<a<n<b答案:A35.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.36.設(shè)α和β為不重合的兩個(gè)平面,給出下列命題:

(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;

(2)若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;

(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;

(4)直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.

上面命題,真命題的序號(hào)是______(寫出所有真命題的序號(hào))答案:由面面平行的判定定理可知,(1)正確.由線面平行的判定定理可知,(2)正確.對(duì)于(3)來說,α內(nèi)直線只垂直于α和β的交線l,得不到其是β的垂線,故也得不出α⊥β.對(duì)于(4)來說,l只有和α內(nèi)的兩條相交直線垂直,才能得到l⊥α.也就是說當(dāng)l垂直于α內(nèi)的兩條平行直線的話,l不一定垂直于α.37.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.38.判斷下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯(cuò)誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域?yàn)镽,g(x)的定義域?yàn)椋簕x|x≥0},故D錯(cuò)誤;故選B.39.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ

(1)求△ABC的面積f(θ)與正方形面積g(θ);

(2)當(dāng)θ變化時(shí),求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

設(shè)正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時(shí)成立)∴當(dāng)θ=π4時(shí),f(θ)g(θ)的最小值為94.40.寫出下列命題非的形式:

(1)p:函數(shù)f(x)=ax2+bx+c的圖象與x軸有唯一交點(diǎn);

(2)q:若x=3或x=4,則方程x2-7x+12=0.答案:(1)函數(shù)f(x)=ax2+bx+c的圖象與x軸沒有交點(diǎn)或至少有兩個(gè)交點(diǎn).(2)若x=3或x=4,則x2-7x+12≠0.41.在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D42.已知x,y之間的一組數(shù)據(jù):

x0123y1357則y與x的回歸方程必經(jīng)過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4)根據(jù)線性回歸方程一定過樣本中心點(diǎn),∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(diǎn)(1.5,4)故選C43.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點(diǎn)E,則此圖形中一定相似的三角形有()對(duì).

A.0

B.3

C.2

D.1

答案:C44.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開圖的長方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長度最短.所以最短路線就是側(cè)面展開圖中長方形的一條對(duì)角線.如圖所示.45.從直徑AB的延長線上取一點(diǎn)C,過點(diǎn)C作該圓的切線,切點(diǎn)為D,若∠ACD的平分線交AD于點(diǎn)E,則∠CED的度數(shù)是()

A.30°

B.45°

C.60°

D.隨點(diǎn)C的變化而變化答案:B46.有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()

A.大前提錯(cuò)誤

B.小前提錯(cuò)誤

C.推理形式錯(cuò)誤

D.結(jié)論正確答案:A47.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱該次試驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次試驗(yàn)是失敗的.

(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;

(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個(gè)小組做了三次試驗(yàn),至少兩次試驗(yàn)成功的概率是P(A)=·+=.(2)第二個(gè)小組在第4次成功前,共進(jìn)行了6次試驗(yàn),其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.48.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()

A.平均狀態(tài)

B.頻率分布

C.波動(dòng)大小

D.最大值和最小值答案:C49.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時(shí),tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.50.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).第3卷一.綜合題(共50題)1.曲線與坐標(biāo)軸的交點(diǎn)是(

)A.B.C.D.答案:B解析:當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為2.下列各圖形不是函數(shù)的圖象的是()A.

B.

C.

D.

答案:由函數(shù)的概念,B中有的x,存在兩個(gè)y與x對(duì)應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B3.在調(diào)試某設(shè)備的線路設(shè)計(jì)中,要選一個(gè)電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻值從小到大安排序號(hào),則第1個(gè)試點(diǎn)的電阻的阻值是(

).答案:3.5kΩ4.M∪{1}={1,2,3}的集合M的個(gè)數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個(gè)數(shù)是2.故為:25.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點(diǎn)C(c,0),D(d,O)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說法正確的是()A.C可能是線段AB的中點(diǎn)B.D可能是線段AB的中點(diǎn)C.C,D可能同時(shí)在線段AB上D.C,D不可能同時(shí)在線段AB的延長線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點(diǎn),則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯(cuò)誤;同理B錯(cuò)誤;若C,D同時(shí)在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時(shí)C和D點(diǎn)重合,與條件矛盾,故C錯(cuò)誤.故選D6.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C7.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D8.方程4x-3×2x+2=0的根的個(gè)數(shù)是(

A.0

B.1

C.2

D.3答案:C9.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標(biāo)為()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A10.安排6名演員的演出順序時(shí),要求演員甲不第一個(gè)出場,也不最后一個(gè)出場,則不同的安排方法種數(shù)是()

A.120

B.240

C.480

D.720答案:C11.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實(shí)施的變換為()

A.x=3x1-1

B.x=3x1+1

C.x=4x1-1

D.x=4x1+1答案:C12.設(shè)雙曲線(a>0,b>0)的右頂點(diǎn)為A,P為雙曲線上的一個(gè)動(dòng)點(diǎn)(不是頂點(diǎn)),從點(diǎn)A引雙曲線的兩條漸近線的平行線,與直線OP分別交于Q,R兩點(diǎn),其中O為坐標(biāo)原點(diǎn),則|OP|2與|OQ|?|OR|的大小關(guān)系為()

A.|OP|2<|OQ|?|OR|

B.|OP|2>|OQ|?|OR|

C.|OP|2=|OQ|?|OR|

D.不確定答案:C13.凡自然數(shù)都是整數(shù),而

4是自然數(shù)

所以4是整數(shù).以上三段論推理()

A.正確

B.推理形式不正確

C.兩個(gè)“自然數(shù)”概念不一致

D.兩個(gè)“整數(shù)”概念不一致答案:A14.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車,在這段時(shí)間內(nèi)有3班公共汽車,它們開車的時(shí)刻分別是7:40、7:50和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達(dá)車站的時(shí)刻是互相不牽連的,且每人在7:20至8:00時(shí)的任何時(shí)刻到達(dá)車站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車的概率為12×12=14,甲、乙同乘第二輛車的概率為14×14=116,甲、乙同乘第三輛車的概率為14×14=116,甲、乙同乘一車的概率為14+116+116=38,故選C.15.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點(diǎn)P,PD=2a3,∠OAP=30°,則CP=______.答案:因?yàn)辄c(diǎn)P是AB的中點(diǎn),由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.16.Rt△ABC的直角邊AB在平面α內(nèi),頂點(diǎn)C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B17.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.18.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C19.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D20.在復(fù)平面內(nèi),記復(fù)數(shù)3+i對(duì)應(yīng)的向量為OZ,若向量OZ饒坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到向量OZ所對(duì)應(yīng)的復(fù)數(shù)為______.答案:向量OZ饒坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到向量所對(duì)應(yīng)的復(fù)數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.21.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.22.若事件與相互獨(dú)立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時(shí)發(fā)生,因?yàn)槎呦嗷オ?dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式得:.23.拋擲甲、乙兩骰子,記事件A:“甲骰子的點(diǎn)數(shù)為奇數(shù)”;事件B:“乙骰子的點(diǎn)數(shù)為偶數(shù)”,則P(B|A)的值等于()

A.

B.

C.

D.答案:B24.如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線PC交AB的延長線于點(diǎn)P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B25.給出下列四個(gè)命題:

①若兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;

②在平行四邊形ABCD中,一定有;

③若則

④若則

其中正確的命題個(gè)數(shù)是()

A.1

B.2

C.3

D.4答案:C26.甲、乙、丙、丁四位同學(xué)各自對(duì)A、B兩個(gè)變量的線性相關(guān)性作試驗(yàn),并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:

則哪位同學(xué)的實(shí)驗(yàn)結(jié)果體現(xiàn)A、B兩個(gè)變量更強(qiáng)的線性相關(guān)性()

A.丙

B.乙

C.甲

D.丁答案:C27.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個(gè)虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個(gè)虛根為-1-5±10-25i4,-1+5±10+25i4中的一個(gè)故為:-1-5+10-25i4.28.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測得10對(duì)母女的身高如下表所示:

母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計(jì)算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計(jì)算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時(shí),可以估計(jì)女兒的身高大致為______.答案:查對(duì)臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時(shí),y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.29.以橢圓x23+y2=1的右焦點(diǎn)為焦點(diǎn),且頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為______.答案:∵橢圓x23+y2=1的右焦點(diǎn)F(2,0),∴以F(2,0)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為y2=42x.故為:y2=42x.30.如果一個(gè)直角三角形的兩條邊長分別是6和8,另一個(gè)與它相似的直角三角形邊長分別是4和3及x,那么x的值的個(gè)數(shù)為()

A.1個(gè)

B.2個(gè)

C.2個(gè)以上但有限

D.無數(shù)個(gè)答案:B31.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為32,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.32.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.33.將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對(duì)稱,試求平移后的圖形對(duì)應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對(duì)稱,試求平移后的圖形對(duì)應(yīng)的函數(shù)解析式.34.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6

表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中有一個(gè)模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.35.設(shè)向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.36.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立37.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.38.函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù))對(duì)任意實(shí)數(shù)x、y,都有()

A.f(x+y)=f(x)f(y)

B.f(x+y)=f(x)+f(y)

C.f(xy)=f(x)f(y)

D.f(xy)=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論