版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題15周期性、單調(diào)性、奇偶性、對稱性的靈活運用【命題規(guī)律】從近五年的高考情況來看,本節(jié)是高考的一個重點,函數(shù)的單調(diào)性、奇偶性、周期性是高考的必考內(nèi)容,重點關(guān)注單調(diào)性、奇偶性結(jié)合在一起,與函數(shù)圖像、函數(shù)零點和不等式相結(jié)合進(jìn)行考查,解題時要充分運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想.【核心考點目錄】核心考點一:函數(shù)單調(diào)性的綜合應(yīng)用核心考點二:函數(shù)的奇偶性的綜合應(yīng)用核心考點三:已知SKIPIF1<0奇函數(shù)SKIPIF1<0核心考點四:利用軸對稱解決函數(shù)問題核心考點五:利用中心對稱解決函數(shù)問題核心考點六:利用周期性和對稱性解決函數(shù)問題核心考點七:類周期函數(shù)核心考點八:抽象函數(shù)的單調(diào)性、奇偶性、周期性、對稱性核心考點九:函數(shù)性質(zhì)的綜合【真題回歸】1.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為R,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】A【解析】[方法一]:賦值加性質(zhì)因為SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個周期為SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.[方法二]:【最優(yōu)解】構(gòu)造特殊函數(shù)由SKIPIF1<0,聯(lián)想到余弦函數(shù)和差化積公式SKIPIF1<0,可設(shè)SKIPIF1<0,則由方法一中SKIPIF1<0知SKIPIF1<0,解得SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0符合條件,因此SKIPIF1<0的周期SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,由于22除以6余4,所以SKIPIF1<0.故選:A.【整體點評】法一:利用賦值法求出函數(shù)的周期,即可解出,是該題的通性通法;2.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域均為R,且SKIPIF1<0.若SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,代入得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,聯(lián)立得,SKIPIF1<0,所以SKIPIF1<0的圖像關(guān)于點SKIPIF1<0中心對稱,因為函數(shù)SKIPIF1<0的定義域為R,所以SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故選:D3.(多選題)(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】[方法一]:對稱性和周期性的關(guān)系研究對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0①,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,故C正確;對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,由①求導(dǎo),和SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,因為其定義域為R,所以SKIPIF1<0,結(jié)合SKIPIF1<0關(guān)于SKIPIF1<0對稱,從而周期SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知SKIPIF1<0周期為2,關(guān)于SKIPIF1<0對稱,故可設(shè)SKIPIF1<0,則SKIPIF1<0,顯然A,D錯誤,選BC.故選:BC.[方法三]:因為SKIPIF1<0,SKIPIF1<0均為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故C正確;函數(shù)SKIPIF1<0,SKIPIF1<0的圖象分別關(guān)于直線SKIPIF1<0對稱,又SKIPIF1<0,且函數(shù)SKIPIF1<0可導(dǎo),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.【整體點評】方法一:根據(jù)題意賦值變換得到函數(shù)的性質(zhì),即可判斷各選項的真假,轉(zhuǎn)化難度較高,是該題的通性通法;方法二:根據(jù)題意得出的性質(zhì)構(gòu)造特殊函數(shù),再驗證選項,簡單明了,是該題的最優(yōu)解.4.(2022·全國·統(tǒng)考高考真題)若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【答案】
SKIPIF1<0;
SKIPIF1<0.【解析】[方法一]:奇函數(shù)定義域的對稱性若SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0,不關(guān)于原點對稱SKIPIF1<0若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關(guān)于原點對稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0[方法三]:因為函數(shù)SKIPIF1<0為奇函數(shù),所以其定義域關(guān)于原點對稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域為SKIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內(nèi)滿足SKIPIF1<0,符合題意.故答案為:SKIPIF1<0;SKIPIF1<0.【方法技巧與總結(jié)】1、單調(diào)性技巧(1)證明函數(shù)單調(diào)性的步驟①取值:設(shè)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0定義域內(nèi)一個區(qū)間上的任意兩個量,且SKIPIF1<0;②變形:作差變形(變形方法:因式分解、配方、有理化等)或作商變形;③定號:判斷差的正負(fù)或商與SKIPIF1<0的大小關(guān)系;④得出結(jié)論.(2)函數(shù)單調(diào)性的判斷方法①定義法:根據(jù)增函數(shù)、減函數(shù)的定義,按照“取值—變形—判斷符號—下結(jié)論”進(jìn)行判斷.②圖象法:就是畫出函數(shù)的圖象,根據(jù)圖象的上升或下降趨勢,判斷函數(shù)的單調(diào)性.③直接法:就是對我們所熟悉的函數(shù),如一次函數(shù)、二次函數(shù)、反比例函數(shù)等,直接寫出它們的單調(diào)區(qū)間.(3)記住幾條常用的結(jié)論:①若SKIPIF1<0是增函數(shù),則SKIPIF1<0為減函數(shù);若SKIPIF1<0是減函數(shù),則SKIPIF1<0為增函數(shù);②若SKIPIF1<0和SKIPIF1<0均為增(或減)函數(shù),則在SKIPIF1<0和SKIPIF1<0的公共定義域上SKIPIF1<0為增(或減)函數(shù);③若SKIPIF1<0且SKIPIF1<0為增函數(shù),則函數(shù)SKIPIF1<0為增函數(shù),SKIPIF1<0為減函數(shù);④若SKIPIF1<0且SKIPIF1<0為減函數(shù),則函數(shù)SKIPIF1<0為減函數(shù),SKIPIF1<0為增函數(shù).2、奇偶性技巧(1)函數(shù)具有奇偶性的必要條件是其定義域關(guān)于原點對稱.(2)奇偶函數(shù)的圖象特征.函數(shù)SKIPIF1<0是偶函數(shù)SKIPIF1<0函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱;函數(shù)SKIPIF1<0是奇函數(shù)SKIPIF1<0函數(shù)SKIPIF1<0的圖象關(guān)于原點中心對稱.(3)若奇函數(shù)SKIPIF1<0在SKIPIF1<0處有意義,則有SKIPIF1<0;偶函數(shù)SKIPIF1<0必滿足SKIPIF1<0.(4)偶函數(shù)在其定義域內(nèi)關(guān)于原點對稱的兩個區(qū)間上單調(diào)性相反;奇函數(shù)在其定義域內(nèi)關(guān)于原點對稱的兩個區(qū)間上單調(diào)性相同.(5)若函數(shù)SKIPIF1<0的定義域關(guān)于原點對稱,則函數(shù)SKIPIF1<0能表示成一個偶函數(shù)與一個奇函數(shù)的和的形式.記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.(6)運算函數(shù)的奇偶性規(guī)律:運算函數(shù)是指兩個(或多個)函數(shù)式通過加、減、乘、除四則運算所得的函數(shù),如SKIPIF1<0.對于運算函數(shù)有如下結(jié)論:奇SKIPIF1<0奇=奇;偶SKIPIF1<0偶=偶;奇SKIPIF1<0偶=非奇非偶;奇SKIPIF1<0奇=偶;奇SKIPIF1<0偶=奇;偶SKIPIF1<0偶=偶.(7)復(fù)合函數(shù)SKIPIF1<0的奇偶性原來:內(nèi)偶則偶,兩奇為奇.(8)常見奇偶性函數(shù)模型奇函數(shù):=1\*GB3①函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0=4\*GB3④函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.注意:關(guān)于=1\*GB3①式,可以寫成函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.偶函數(shù):=1\*GB3①函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0類型的一切函數(shù).④常數(shù)函數(shù)3、周期性技巧SKIPIF1<04、函數(shù)的的對稱性與周期性的關(guān)系(1)若函數(shù)SKIPIF1<0有兩條對稱軸SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(2)若函數(shù)SKIPIF1<0的圖象有兩個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(3)若函數(shù)SKIPIF1<0有一條對稱軸SKIPIF1<0和一個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0.5、對稱性技巧(1)若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0.(2)若函數(shù)SKIPIF1<0關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0.(3)函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于原點對稱.【核心考點】核心考點一:函數(shù)單調(diào)性的綜合應(yīng)用【典型例題】例1.(2023春·江西鷹潭·高三貴溪市實驗中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】顯然當(dāng)SKIPIF1<0時,SKIPIF1<0為單調(diào)減函數(shù),SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,則對稱軸為SKIPIF1<0,SKIPIF1<0若SKIPIF1<0是SKIPIF1<0上減函數(shù),則SKIPIF1<0解得SKIPIF1<0,故選:A.例2.(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】假設(shè)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),而SKIPIF1<0是SKIPIF1<0向右平移1個單位長度,向上平移3個單位長度,所以SKIPIF1<0的對稱中心為SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0求導(dǎo)得SKIPIF1<0因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0,取等號,所以SKIPIF1<0所以SKIPIF1<0在R上單調(diào)遞增,因為SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,故選:B例3.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,且滿足SKIPIF1<0,則下列正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,或SKIPIF1<0,∴SKIPIF1<0(舍去),或SKIPIF1<0,即SKIPIF1<0,故A錯誤;又SKIPIF1<0,故SKIPIF1<0,∴SKIPIF1<0,對于函數(shù)SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,故D錯誤;∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴函數(shù)SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故B正確;∵SKIPIF1<0,∴函數(shù)SKIPIF1<0單調(diào)遞增,故函數(shù)SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0,故C錯誤.故選:B.核心考點二:函數(shù)的奇偶性的綜合應(yīng)用【典型例題】例4.(2023·全國·高三專題練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0為偶函數(shù),則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】∵SKIPIF1<0為偶函數(shù),∴SKIPIF1<0,即函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0,可得SKIPIF1<0,整理得,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選:B.例5.(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0是定義在R上的奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)題意,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),因為SKIPIF1<0是定義在R上的奇函數(shù),所以SKIPIF1<0在R上為增函數(shù),因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以不等式SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0,故選:C例6.(2023·全國·高三專題練習(xí))已知偶函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則使不等式SKIPIF1<0成立的實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,不等式SKIPIF1<0即為SKIPIF1<0.又因為SKIPIF1<0是偶函數(shù),所以不等式SKIPIF1<0等價于SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.綜上可知,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故選:A.例7.(2023·全國·高三專題練習(xí))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為函數(shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以不等式SKIPIF1<0,可化為SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在R上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0.故選:D.例8.(2023春·廣西·高三期末)SKIPIF1<0是定義在R上的函數(shù),SKIPIF1<0為奇函數(shù),則SKIPIF1<0(
)A.-1 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【解析】SKIPIF1<0是定義在R上的函數(shù),SKIPIF1<0為奇函數(shù),則SKIPIF1<0.∴SKIPIF1<0.故選:A例9.(2023春·甘肅蘭州·高三蘭化一中??茧A段練習(xí))若函數(shù)f(x)=SKIPIF1<0,則滿足SKIPIF1<0恒成立的實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0上的奇函數(shù),由SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0上的增函數(shù),所以SKIPIF1<0等價于:SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則問題轉(zhuǎn)化為:SKIPIF1<0,因為SKIPIF1<0且定義域為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0是SKIPIF1<0上的偶函數(shù),所以只需求SKIPIF1<0在SKIPIF1<0上的最大值即可.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,可得:SKIPIF1<0,即SKIPIF1<0,故選:A.核心考點三:已知SKIPIF1<0奇函數(shù)+M【典型例題】例10.(2022·重慶一中高三階段練習(xí))已知SKIPIF1<0(a,b為實數(shù)),SKIPIF1<0,則SKIPIF1<0______.【答案】-2014【解析】SKIPIF1<0,因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,其中SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0故答案為:-2014例11.(2022·河南·西平縣高級中學(xué)模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.2 B.3 C.-2 D.-3【答案】D【解析】設(shè)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:D.例12.(2022·福建省福州第一中學(xué)高二期末)若對SKIPIF1<0,有SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在最大值和最小值,則其最大值與最小值的和為()A.4 B.8 C.12 D.16【答案】B【解析】由題設(shè),SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0為奇函數(shù),令SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0是奇函數(shù),∴SKIPIF1<0在SKIPIF1<0上的最小、最大值的和為0,即SKIPIF1<0,∴SKIPIF1<0.故選:B核心考點四:利用軸對稱解決函數(shù)問題【典型例題】例13.(2022·全國·高三專題練習(xí))若SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0等于(
)A.2 B.3 C.4 D.5【答案】D【解析】由題意SKIPIF1<0,故有SKIPIF1<0故SKIPIF1<0和SKIPIF1<0是直線SKIPIF1<0和曲線SKIPIF1<0、曲線SKIPIF1<0交點的橫坐標(biāo).根據(jù)函數(shù)SKIPIF1<0和函數(shù)SKIPIF1<0互為反函數(shù),它們的圖象關(guān)于直線SKIPIF1<0對稱,故曲線SKIPIF1<0和曲線SKIPIF1<0的圖象交點關(guān)于直線SKIPIF1<0對稱.即點(x1,5﹣x1)和點(x2,5﹣x2)構(gòu)成的線段的中點在直線y=x上,即SKIPIF1<0,求得x1+x2=5,故選:D.例14.(2021春·高一單元測試)設(shè)函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.(0,2] B.SKIPIF1<0C.[2,+∞) D.SKIPIF1<0∪[2,+∞)【答案】B【解析】由題意,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,所以函數(shù)SKIPIF1<0為SKIPIF1<0的偶函數(shù),且在SKIPIF1<0上為單調(diào)遞減函數(shù),令SKIPIF1<0,可得SKIPIF1<0,則不等式SKIPIF1<0可化為SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故選:B.例15.(2021春·西藏拉薩·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的大小關(guān)系(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】令SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是偶函數(shù);SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是增函數(shù),將SKIPIF1<0圖像向右平移一個單位得到SKIPIF1<0圖像,所以SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,且在SKIPIF1<0單調(diào)遞增.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,∴SKIPIF1<0,∴SKIPIF1<0.故選:A核心考點五:利用中心對稱解決函數(shù)問題【典型例題】例16.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是SKIPIF1<0上的偶函數(shù),且SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0圖象關(guān)于點SKIPIF1<0對稱,SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0上的偶函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:C.例17.(2021春·安徽六安·高三校考階段練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),若函數(shù)SKIPIF1<0與SKIPIF1<0圖象共有SKIPIF1<0個交點為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,故函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,因為函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0的圖象也關(guān)于點SKIPIF1<0對稱,函數(shù)SKIPIF1<0與SKIPIF1<0圖象共有SKIPIF1<0個交點為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,且這六個點也關(guān)于點SKIPIF1<0對稱,所以,SKIPIF1<0.故選:B.例18.(2021春·貴州黔東南·高一凱里一中??计谥校┮阎瘮?shù)SKIPIF1<0是奇函數(shù),若函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點分別為SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,則交點的所有橫坐標(biāo)和縱坐標(biāo)之和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題可得SKIPIF1<0關(guān)于點SKIPIF1<0對稱,SKIPIF1<0的圖象也關(guān)于點SKIPIF1<0對稱,即若點SKIPIF1<0為交點,則點SKIPIF1<0也為交點,同理若SKIPIF1<0為交點,則點SKIPIF1<0也為交點,……則交點的所有橫坐標(biāo)和縱坐標(biāo)之和為SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:D.例19.(2022春·湖北恩施·高一恩施市第一中學(xué)??茧A段練習(xí))已知定義在R上的奇函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交點的橫坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),則SKIPIF1<0,且函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交點關(guān)于原點對稱,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則不等式SKIPIF1<0,即為SKIPIF1<0,解得SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0.故選:A.例20.(2021春·四川綿陽·高一四川省綿陽南山中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0滿足SKIPIF1<0,若函數(shù)SKIPIF1<0恰有SKIPIF1<0個零點,則所有這些零點之和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】函數(shù)SKIPIF1<0滿足SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,且SKIPIF1<0(1)SKIPIF1<0,函數(shù)SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),其圖象關(guān)于點SKIPIF1<0對稱,又函數(shù)SKIPIF1<0是由函數(shù)SKIPIF1<0向右平移一個單位得到的函數(shù),故函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,令SKIPIF1<0,則SKIPIF1<0,因為函數(shù)SKIPIF1<0與SKIPIF1<0的圖象都關(guān)于點SKIPIF1<0對稱,所以兩個函數(shù)圖象的交點也關(guān)于點SKIPIF1<0對稱,因為函數(shù)SKIPIF1<0恰有2021個零點,所以2021個零點除SKIPIF1<0之外的2020個零點關(guān)于SKIPIF1<0對稱,則所有這些零點之和為SKIPIF1<0.故選:D.核心考點六:利用周期性和對稱性解決函數(shù)問題【典型例題】例21.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,用SKIPIF1<0代替SKIPIF1<0得:SKIPIF1<0,因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,故SKIPIF1<0①,用SKIPIF1<0代替SKIPIF1<0得:SKIPIF1<0②,由①②得:SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,其中SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.故選:C例22.(2023·四川資陽·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為偶函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),且SKIPIF1<0.則SKIPIF1<0(
)A.16 B.20 C.24 D.28【答案】C【解析】因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于點SKIPIF1<0中心對稱,由SKIPIF1<0及SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0所以函數(shù)SKIPIF1<0的周期為SKIPIF1<0,因為當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),且SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,因為SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:SKIPIF1<0.例23.(2023·山東濟寧·高三嘉祥縣第一中學(xué)??茧A段練習(xí))已知定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0.若直線SKIPIF1<0與曲線SKIPIF1<0恰有三個公共點,那么實數(shù)a的取值的集合為(
)A.SKIPIF1<0(SKIPIF1<0) B.SKIPIF1<0(SKIPIF1<0)C.SKIPIF1<0(SKIPIF1<0) D.SKIPIF1<0(SKIPIF1<0)【答案】B【解析】定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,且SKIPIF1<0為周期是2的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,所以畫出函數(shù)圖像如下圖所示:①當(dāng)SKIPIF1<0時,結(jié)合圖像可知SKIPIF1<0與SKIPIF1<0(SKIPIF1<0)有兩個公共點;②當(dāng)SKIPIF1<0與SKIPIF1<0(SKIPIF1<0)相切時,滿足SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時,結(jié)合圖像可知SKIPIF1<0與SKIPIF1<0(SKIPIF1<0)有兩個公共點;由圖像可知,SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0(SKIPIF1<0)有三個公共點;又因為SKIPIF1<0周期SKIPIF1<0,可知SKIPIF1<0(SKIPIF1<0).故選:B.例24.(2023·全國·高三專題練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0圖象與SKIPIF1<0的圖象恰有10個不同的公共點,則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為函數(shù)SKIPIF1<0滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0是周期為2的周期函數(shù),又函數(shù)SKIPIF1<0的圖象可由函數(shù)SKIPIF1<0的圖象向左平移一個單位可得,所以函數(shù)SKIPIF1<0的圖象的對稱軸為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象也關(guān)于SKIPIF1<0對稱,在平面直角坐標(biāo)系中作出函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0右側(cè)的圖象,數(shù)形結(jié)合可得,若函數(shù)SKIPIF1<0圖象與SKIPIF1<0的圖象恰有10個不同的公共點,則由函數(shù)圖象的對稱性可得兩圖象在SKIPIF1<0右側(cè)有5個交點,則SKIPIF1<0,解得SKIPIF1<0.故選:D.例25.(2023春·江西鷹潭·高三貴溪市實驗中學(xué)??茧A段練習(xí))已知SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0,恒有SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<01,則SKIPIF1<0(
)A.1 B.-1 C.0 D.2【答案】B【解析】因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版跨境電商園區(qū)企業(yè)入駐合作合同書3篇
- 二零二五版購房合同中合同解除后的爭議解決3篇
- 二零二五版房屋買賣合同公證操作規(guī)范及法律效力研究3篇
- 二零二五年度高級家教專業(yè)能力認(rèn)證聘用合同集錦3篇
- 二零二五年度電子商務(wù)網(wǎng)絡(luò)安全監(jiān)測與應(yīng)急響應(yīng)合同3篇
- 二零二五年度高端精密鈑金件加工服務(wù)合同2篇
- 二零二五年鋼材加工損耗賠償合同標(biāo)準(zhǔn)3篇
- 2025年度農(nóng)業(yè)現(xiàn)代化合作雙邊合同3篇
- 二零二五年度酒店客房預(yù)訂與客房管理服務(wù)合同3篇
- 二零二五年度金正茂集團管理體制實施合同9篇
- 高考詩歌鑒賞專題復(fù)習(xí):題畫抒懷詩、干謁言志詩
- 2023年遼寧省交通高等??茖W(xué)校高職單招(英語)試題庫含答案解析
- GB/T 33688-2017選煤磁選設(shè)備工藝效果評定方法
- GB/T 304.3-2002關(guān)節(jié)軸承配合
- 漆畫漆藝 第三章
- CB/T 615-1995船底吸入格柵
- 光伏逆變器一課件
- 貨物供應(yīng)、運輸、包裝說明方案
- (完整版)英語高頻詞匯800詞
- 《基礎(chǔ)馬來語》課程標(biāo)準(zhǔn)(高職)
- IEC61850研討交流之四-服務(wù)影射
評論
0/150
提交評論