新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練技巧01 單選題和多選題的答題技巧(精講精練)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練技巧01 單選題和多選題的答題技巧(精講精練)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練技巧01 單選題和多選題的答題技巧(精講精練)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練技巧01 單選題和多選題的答題技巧(精講精練)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練技巧01 單選題和多選題的答題技巧(精講精練)(解析版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

技巧01單選題和多選題的答題技巧【命題規(guī)律】高考的單選題和多選題絕大部分屬于中檔題目,通常按照由易到難的順序排列,每道題目一般是多個知識點的小型綜合,其中不乏滲透各種數(shù)學(xué)的思想和方法,基本上能夠做到充分考查靈活應(yīng)用基礎(chǔ)知識解決數(shù)學(xué)問題的能力.(1)基本策略:單選題和多選題屬于“小靈通”題,其解題過程可以說是“不講道理”,所以其解題的基本策略是充分利用題干所提供的信息作出判斷和分析,先定性后定量,先特殊后一般,先間接后直接,尤其是對選擇題可以先進行排除,縮小選項數(shù)量后再驗證求解.(2)常用方法:單選題和多選題也屬“小”題,解題的原則是“小”題巧解,“小”題快解,“小”題解準(zhǔn).求解的方法主要分為直接法和間接法兩大類,具體有:直接法,特值法,圖解法,構(gòu)造法,估算法,對選擇題還有排除法(篩選法)等.【核心考點目錄】核心考點一:直接法核心考點二:特珠法核心考點三:檢驗法核心考點四:排除法核心考點五:構(gòu)造法核心考點六:估算法核心考點七:坐標(biāo)法核心考點八:圖解法【真題回歸】1.函數(shù)SKIPIF1<0的圖像為(

)A. B.C. D.【答案】D【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),A選項錯誤;又當(dāng)SKIPIF1<0時,SKIPIF1<0,C選項錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0函數(shù)單調(diào)遞增,故B選項錯誤;故選:D.2.如圖,“十字歇山”是由兩個直三棱柱重疊后的景象,重疊后的底面為正方形,直三棱柱的底面是頂角為SKIPIF1<0,腰為3的等腰三角形,則該幾何體的體積為(

)A.23 B.24 C.26 D.27【答案】D【解析】該幾何體由直三棱柱SKIPIF1<0及直三棱柱SKIPIF1<0組成,作SKIPIF1<0于M,如圖,因為SKIPIF1<0,所以SKIPIF1<0,因為重疊后的底面為正方形,所以SKIPIF1<0,在直棱柱SKIPIF1<0中,SKIPIF1<0平面BHC,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0平面SKIPIF1<0,設(shè)重疊后的EG與SKIPIF1<0交點為SKIPIF1<0則SKIPIF1<0則該幾何體的體積為SKIPIF1<0.故選:D.3.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】A【解析】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),排除BD;又當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,排除C.故選:A.4.若SKIPIF1<0,則SKIPIF1<0(

)A.40 B.41 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故選:B.5.(多選題)若x,y滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】因為SKIPIF1<0(SKIPIF1<0R),由SKIPIF1<0可變形為,SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0,所以A錯誤,B正確;由SKIPIF1<0可變形為SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,所以C正確;因為SKIPIF1<0變形可得SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時滿足等式,但是SKIPIF1<0不成立,所以D錯誤.故選:BC.6.(多選題)如圖,四邊形SKIPIF1<0為正方形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,記三棱錐SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的體積分別為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】設(shè)SKIPIF1<0,因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,易得SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,易得四邊形SKIPIF1<0為矩形,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故A、B錯誤;C、D正確.故選:CD.7.(多選題)雙曲線C的兩個焦點為SKIPIF1<0,以C的實軸為直徑的圓記為D,過SKIPIF1<0作D的切線與C交于M,N兩點,且SKIPIF1<0,則C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】[方法一]:幾何法,雙曲線定義的應(yīng)用情況一M、N在雙曲線的同一支,依題意不妨設(shè)雙曲線焦點在SKIPIF1<0軸,設(shè)過SKIPIF1<0作圓SKIPIF1<0的切線切點為B,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在雙曲線的左支,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,由即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0選A情況二若M、N在雙曲線的兩支,因為SKIPIF1<0,所以SKIPIF1<0在雙曲線的右支,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0,所以雙曲線的離心率SKIPIF1<0選C故選:AC.8.(多選題)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】[方法一]:對稱性和周期性的關(guān)系研究對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0①,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,故C正確;對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,由①求導(dǎo),和SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,因為其定義域為R,所以SKIPIF1<0,結(jié)合SKIPIF1<0關(guān)于SKIPIF1<0對稱,從而周期SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知SKIPIF1<0周期為2,關(guān)于SKIPIF1<0對稱,故可設(shè)SKIPIF1<0,則SKIPIF1<0,顯然A,D錯誤,選BC.故選:BC.故選:BC.【方法技巧與總結(jié)】1、排除法也叫篩選法或淘汰法,使用排除法的前提條件是答案唯一,具體的做法是采用簡捷有效的手段對各個備選答案進行“篩選”,將其中與題干相矛盾的干擾支逐一排除,從而獲得正確結(jié)論.2、特殊值法:從題干(或選項)出發(fā),通過選取特殊情況代入,將問題特殊化或構(gòu)造滿足題設(shè)條件的特殊函數(shù)或圖形位置,進行判斷.特值法是“小題小做”的重要策略,要注意在怎樣的情況下才可使用,特殊情況可能是:特殊值、特殊點、特殊位置、特殊數(shù)列等.3、圖解法:對于一些含有幾何背景的題,若能根據(jù)題目中的條件,作出符合題意的圖形,并通過對圖形的直觀分析、判斷,即可快速得出正確結(jié)果.這類問題的幾何意義一般較為明顯,如一次函數(shù)的斜率和截距、向量的夾角、解析幾何中兩點間距離等.4、構(gòu)造法是一種創(chuàng)造性思維,是綜合運用各種知識和方法,依據(jù)問題給出的條件和結(jié)論給出的信息,把問題作適當(dāng)?shù)募庸ぬ幚?,?gòu)造與問題相關(guān)的數(shù)學(xué)模型,揭示問題的本質(zhì),從而找到解題的方法5、估算法:由于選擇題提供了唯一正確的選項,解答又無需過程.因此,有些題目,不必進行準(zhǔn)確的計算,只需對其數(shù)值特點和取值界限作出適當(dāng)?shù)墓烙?,便能作出正確的判斷,這就是估算法.估算法往往可以減少運算量.6、檢驗法:將選項分別代人題設(shè)中或?qū)㈩}設(shè)代人選項中逐一檢驗,確定正確選項.【核心考點】核心考點一:直接法【典型例題】例1.基本再生數(shù)SKIPIF1<0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:SKIPIF1<0描述累計感染病例數(shù)SKIPIF1<0隨時間SKIPIF1<0(單位:天)的變化規(guī)律,指數(shù)增長率r與SKIPIF1<0,T近似滿足SKIPIF1<0.有學(xué)者基于已有數(shù)據(jù)估計出SKIPIF1<0,SKIPIF1<0.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加3倍需要的時間約為(SKIPIF1<0)(

)A.1.8天 B.2.5天 C.3.6天 D.4.2天【答案】C【解析】把SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0.設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加3倍需要的時間為SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,整理有SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C.例2.設(shè)函數(shù)SKIPIF1<0,已知SKIPIF1<0在SKIPIF1<0上有且僅有3個極值點,則SKIPIF1<0的取值范圍是(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題知,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上有且僅有3個極值點,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A例3.(多選題)設(shè)函數(shù)SKIPIF1<0的定義域為R,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,若對任意SKIPIF1<0,都有SKIPIF1<0,則實數(shù)m的取值可以是(

)A.3 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【解析】因為函數(shù)SKIPIF1<0的定義域為R,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)部分圖象如圖所示,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因為對任意SKIPIF1<0,都有SKIPIF1<0,所以由圖可知SKIPIF1<0,故選:ABC核心考點二:特珠法【典型例題】例4.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0這三個數(shù)的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因為SKIPIF1<0,所以取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C.例5.(多選題)已知SKIPIF1<0,則下列不等式成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】選項A:SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0.判斷錯誤;選項B:由SKIPIF1<0,可得SKIPIF1<0為SKIPIF1<0上減函數(shù),又SKIPIF1<0,則SKIPIF1<0.判斷正確;選項C:由SKIPIF1<0,可知SKIPIF1<0為R上減函數(shù),又SKIPIF1<0,則SKIPIF1<0由SKIPIF1<0,可知SKIPIF1<0為SKIPIF1<0上增函數(shù),又SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0又SKIPIF1<0為SKIPIF1<0上增函數(shù),則SKIPIF1<0,則SKIPIF1<0.判斷正確;選項D:令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0.判斷錯誤.故選:BC例6.(多選題)我們知道,函數(shù)SKIPIF1<0的圖象關(guān)于坐標(biāo)原點成中心對稱圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù).有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0成中心對稱圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù).現(xiàn)已知函數(shù)SKIPIF1<0,則下列說法正確的是(

)A.函數(shù)SKIPIF1<0為奇函數(shù)B.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.若方程SKIPIF1<0有實根,則SKIPIF1<0D.設(shè)定義域為SKIPIF1<0的函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0中心對稱,若SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的圖象共有2022個交點,記為SKIPIF1<0,則SKIPIF1<0的值為4044【答案】ACD【解析】對于A.SKIPIF1<0由解析式可知SKIPIF1<0是奇函數(shù),故A正確;對于B.特殊值法SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不是單調(diào)遞增,故B錯誤.對于C.令SKIPIF1<0,分離參數(shù)后SKIPIF1<0,SKIPIF1<0故SKIPIF1<0,C正確;對于D.由A可知,當(dāng)SKIPIF1<0時,SKIPIF1<0關(guān)于SKIPIF1<0中心對稱,且SKIPIF1<0關(guān)于SKIPIF1<0中心對稱,所以這2022個交點關(guān)于SKIPIF1<0對稱,故SKIPIF1<0,D正確.故選:ACD核心考點三:檢驗法【典型例題】例7.(多選題)對于定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,若存在非零實數(shù)SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上均有零點,則稱SKIPIF1<0為SKIPIF1<0的一個“折點”.下列函數(shù)中存在“折點”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】A:因為SKIPIF1<0,所以SKIPIF1<0沒有零點,即SKIPIF1<0沒有“折點”;B:當(dāng)SKIPIF1<0時SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有零點.又SKIPIF1<0是偶函數(shù),所以SKIPIF1<0在SKIPIF1<0上有零點,所以SKIPIF1<0存在“折點”.C:令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上有零點,在SKIPIF1<0上有零點,即SKIPIF1<0存在“折點”.D:令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0只有一個零點,即SKIPIF1<0沒有“折點”.故選:BC例8.(多選題)已知函數(shù)SKIPIF1<0的圖象經(jīng)過原點,且恰好存在2個SKIPIF1<0,使得SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則(

)A.SKIPIF1<0B.SKIPIF1<0的取值范圍為SKIPIF1<0C.一定不存在3個SKIPIF1<0,使得SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱D.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減【答案】ABD【解析】因為SKIPIF1<0,得SKIPIF1<0,A正確.設(shè)SKIPIF1<0,則SKIPIF1<0如圖所示,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,B正確.如圖所示,當(dāng)SKIPIF1<0時,存在3個SKIPIF1<0,使得SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱.C錯誤.因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,D正確.故選:ABD例9.(多選題)在數(shù)學(xué)中,布勞威爾不動點定理是拓?fù)鋵W(xué)里一個非常重要的不動點定理,它得名于荷蘭數(shù)學(xué)家魯伊茲·布勞威爾,簡單地講就是對于滿足一定條件的連續(xù)函數(shù)SKIPIF1<0,存在一個點SKIPIF1<0,使得SKIPIF1<0,那么我們稱該函數(shù)為“不動點”函數(shù),而稱SKIPIF1<0為該函數(shù)的一個不動點,依據(jù)不動點理論,下列說法正確的是(

)A.函數(shù)SKIPIF1<0有3個不動點B.函數(shù)SKIPIF1<0至多有兩個不動點C.若函數(shù)SKIPIF1<0沒有不動點,則方程SKIPIF1<0無實根D.設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0,e為自然對數(shù)的底數(shù)),若曲線SKIPIF1<0上存在點SKIPIF1<0使SKIPIF1<0成立,則a的取值范圍是SKIPIF1<0【答案】BCD【解析】對于A,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取“=”,則SKIPIF1<0在R上單調(diào)遞減,而SKIPIF1<0,即SKIPIF1<0在R上只有一個零點,函數(shù)SKIPIF1<0只有一個不動點,A不正確;對于B,因二次函數(shù)SKIPIF1<0至多有兩個零點,則函數(shù)SKIPIF1<0至多有兩個不動點,B正確;對于C,依題意,方程SKIPIF1<0無實數(shù)根,即SKIPIF1<0,當(dāng)SKIPIF1<0時,二次函數(shù)SKIPIF1<0的圖象開口向上,則SKIPIF1<0恒成立,即SKIPIF1<0,恒有SKIPIF1<0,而SKIPIF1<0,因此有SKIPIF1<0恒成立,即方程SKIPIF1<0無實根,當(dāng)SKIPIF1<0時,二次函數(shù)SKIPIF1<0的圖象開口向下,則SKIPIF1<0恒成立,即SKIPIF1<0,恒有SKIPIF1<0,而SKIPIF1<0,因此有SKIPIF1<0恒成立,即方程SKIPIF1<0無實根,所以函數(shù)SKIPIF1<0沒有不動點,則方程SKIPIF1<0無實根,C正確;對于D,點SKIPIF1<0在曲線SKIPIF1<0上,則SKIPIF1<0,又SKIPIF1<0,即有SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0滿足SKIPIF1<0,顯然函數(shù)SKIPIF1<0是定義域上的增函數(shù),若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0矛盾,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0矛盾,因此,當(dāng)SKIPIF1<0時,SKIPIF1<0,即當(dāng)SKIPIF1<0時,SKIPIF1<0,對SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而兩個“=”不同時取得,即當(dāng)SKIPIF1<0時,SKIPIF1<0,于是得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,有SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,D正確.故選:BCD核心考點四:排除法【典型例題】例10.函數(shù)的部分圖象如圖所示,則(

)A. B.C. D.【答案】A

【解析】由題意,函數(shù)SKIPIF1<0圖象可得函數(shù)SKIPIF1<0為奇函數(shù),對于A,SKIPIF1<0,符合題意,對于B,SKIPIF1<0,符合題意,對于C,SKIPIF1<0,不符合題意,對于D,SKIPIF1<0,不符合題意,故排除C,D選項,又當(dāng)SKIPIF1<0時,代入B中函數(shù)解析式,即SKIPIF1<0SKIPIF1<0,不符合題意;故排除B選項,故選SKIPIF1<0例11.定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象可能是(

)A. B.C. D.【答案】B【解析】依題意可知函數(shù)SKIPIF1<0的對稱軸方程為SKIPIF1<0,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0的對稱軸方程為SKIPIF1<0,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0是偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0因此函數(shù)SKIPIF1<0也是偶函數(shù),其圖象關(guān)于y軸對稱,故可以排除選項A和D;當(dāng)SKIPIF1<0時,SKIPIF1<0,由此排除選項SKIPIF1<0例12.如圖1,已知PABC是直角梯形,SKIPIF1<0,SKIPIF1<0,D在線段PC上,SKIPIF1<0將SKIPIF1<0沿AD折起,使平面SKIPIF1<0平面ABCD,連接PB,PC,設(shè)PB的中點為N,如圖SKIPIF1<0對于圖2,下列選項錯誤的是(

)A.平面SKIPIF1<0平面PBC B.SKIPIF1<0平面PDCC.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】解:因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又DC,SKIPIF1<0平面PDC,SKIPIF1<0,即SKIPIF1<0平面PDC,折疊前有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0平面PDC,故B正確.由于平面SKIPIF1<0平面ABCD,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面PAD,且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故C正確.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,PD、AD在平面PAD內(nèi),SKIPIF1<0平面PAD,SKIPIF1<0,SKIPIF1<0平面PAD,又SKIPIF1<0平面PAD,故SKIPIF1<0,SKIPIF1<0為直角三角形,N為斜邊的中點,所以SKIPIF1<0,故D正確.由排除法可得A錯誤.故選SKIPIF1<0核心考點五:構(gòu)造法【典型例題】例13.已知關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0恒成立,則m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】解:由SKIPIF1<0得SKIPIF1<0,即,令SKIPIF1<0,SKIPIF1<0,則,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,若SKIPIF1<0,則在SKIPIF1<0恒成立,記SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,因為SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0所以,即SKIPIF1<0,解得SKIPIF1<0,所以m的取值范圍是SKIPIF1<0故選:SKIPIF1<0例14.已知函數(shù)SKIPIF1<0在R上可導(dǎo),其導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0則下列判斷一定正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】解:令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0此時函數(shù)SKIPIF1<0單調(diào)遞減.SKIPIF1<0即SKIPIF1<0SKIPIF1<0,SKIPIF1<0故選:SKIPIF1<0例15.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】解:SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,于是:SKIPIF1<0,即:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0故選SKIPIF1<0核心考點六:估算法【典型例題】例16.(2020春·江蘇淮安·高三江蘇省漣水中學(xué)??茧A段練習(xí))古希臘時期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是SKIPIF1<0(SKIPIF1<0稱為黃金分割比例),已知一位美女身高160cm,穿上高跟鞋后肚臍至鞋底的長度約103.8cm,若她穿上高跟鞋后達(dá)到黃金比例身材,則她穿的高跟鞋約是(

)(結(jié)果保留一位小數(shù))A.7.8cm B.7.9cm C.8.0cm D.8.1cm【答案】B【解析】設(shè)該美女穿的高跟鞋為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故選:B.例17.設(shè)函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),在區(qū)間SKIPIF1<0上是增函數(shù),且SKIPIF1<0,則有(

)A. B.C. D.【答案】A【解析】解:根據(jù)題意,定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),在區(qū)間SKIPIF1<0上是增函數(shù),則SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),則有SKIPIF1<0,則有SKIPIF1<0,故選:SKIPIF1<0核心考點七:坐標(biāo)法【典型例題】例18.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0所在平面內(nèi)的動點,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】解:法一:建立如圖所示坐標(biāo)系,由題易知,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0法二:注意:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0其中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0例19.如圖,在直角梯形ABCD中,SKIPIF1<0為AD的中點,若SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【解析】解:如圖所示,建立直角坐標(biāo)系.不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0則SKIPIF1<0故選:SKIPIF1<0例20.(多選題)如圖,在邊長為2的正方形ABCD中,P為以A為圓心、AB為半徑的圓弧SKIPIF1<0包含B,SKIPIF1<0上的任意一點,且SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0的最大值為SKIPIF1<0B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最大值為4D.SKIPIF1<0的最小值為SKIPIF1<0【答案】ACD【解析】解:分別以AB,AD所在直線為x,y軸建立直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由條件知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故A正確,B錯誤.SKIPIF1<0,SKIPIF1<0,故C,D正確.故選:SKIPIF1<0核心考點八:圖解法【典型例題】例21.已知函數(shù)SKIPIF1<0若方程SKIPIF1<0有三個不同的解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】解:方程SKIPIF1<0有三個不同的解,等價于函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個交點,根據(jù)函數(shù)的圖象知當(dāng)SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有兩個交點或一個交點,不符合題意,當(dāng)SKIPIF1<0與SKIPIF1<0相切時,直線SKIPIF1<0與SKIPIF1<0的圖象有兩個交點,設(shè)SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,又切線過原點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以得切線斜率為SKIPIF1<0,若方程SKIPIF1<0有三個不同的解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)圖象有SKIPIF1<0,故選:SKIPIF1<0例22.已知A,B是圓O:SKIPIF1<0上的兩個動點,SKIPIF1<0,SKIPIF1<0,M為線段AB的中點,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】解:由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由余弦定理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故選:SKIPIF1<0例23.過原點O的直線交雙曲線E:SKIPIF1<0于A,C兩點,A在第一象限,SKIPIF1<0、SKIPIF1<0分別為E的左、右焦點,連接SKIPIF1<0交雙曲線E右支于點B,若SKIPIF1<0,SKIPIF1<0,則雙曲線E的離心率為.(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】解:連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0的中點M,由SKIPIF1<0,得SKIPIF1<0,又O為SKIPIF1<0的中點,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0根據(jù)雙曲線的定義得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,有SKIPIF1<0,化簡得SKIPIF1<0,在SKIPIF1<0中,有SKIPIF1<0,結(jié)合SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0故選SKIPIF1<0【新題速遞】一、單選題1.已知函數(shù)SKIPIF1<0,SKIPIF1<0都是定義域為R的函數(shù),函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.0 C.1 D.2【答案】B

【解析】由函數(shù)SKIPIF1<0為奇函數(shù),得SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,兩式相加得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,故本題選SKIPIF1<02.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列不等關(guān)系正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】對于選項A,取SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,因此A不正確;對于選項B,取SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,所以B不正確;對于選項C,因為SKIPIF1<0,所以SKIPIF1<0,因此C正確;對于選項D,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,故D不正確,故選SKIPIF1<03.某同學(xué)擲骰子5次,分別記錄每次骰子出現(xiàn)的點數(shù),根據(jù)5次的統(tǒng)計結(jié)果,可以判斷一定沒有出現(xiàn)點數(shù)6的是A.中位數(shù)是3,眾數(shù)是2 B.平均數(shù)是3,中位數(shù)是2C.方差是SKIPIF1<0,平均數(shù)是2 D.平均數(shù)是3,眾數(shù)是2【答案】C【解析】選項SKIPIF1<0有可能出現(xiàn)點數(shù)6,例如2,2,3,4,SKIPIF1<0選項SKIPIF1<0有可能出現(xiàn)點數(shù)6,例如2,2,2,3,SKIPIF1<0選項SKIPIF1<0不可能出現(xiàn)點數(shù)6,SKIPIF1<0,如果出現(xiàn)點數(shù)6,則方差大于或等于SKIPIF1<0,不可能是SKIPIF1<0選項SKIPIF1<0有可能出現(xiàn)點數(shù)6,例如2,2,2,3,6,故選SKIPIF1<04.在平面內(nèi),SKIPIF1<0是兩個定點,C是動點.若SKIPIF1<0,則點C的軌跡為(

)A.圓 B.橢圓 C.拋物線 D.直線【答案】A【解析】設(shè)SKIPIF1<0,以AB中點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以點C的軌跡為圓.故選:SKIPIF1<05.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0所在平面內(nèi)的動點,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】法一:建立如圖所示坐標(biāo)系,由題易知,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0法二:注意:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論