版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.2.計算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.63.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離4.實數(shù)a,b在數(shù)軸上對應的點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.5.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.6.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數(shù)為()A.40° B.36° C.50° D.45°7.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.8.下列二次根式中,最簡二次根式是()A. B. C. D.9.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°10.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°11.下列二次根式中,的同類二次根式是()A. B. C. D.12.如下圖所示,該幾何體的俯視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=6,AD=8,則四邊形ABOM的周長為_____.14.如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC=.15.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.16.已知(x-ay)(x+ay),那么a=_______17.如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為________.18.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.20.(6分)“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補充完整;(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?21.(6分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點,DE⊥AM于點E.求證:△ADE∽△MAB;求DE的長.22.(8分)計算:﹣4cos45°+()﹣1+|﹣2|.23.(8分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點A順時針旋轉(zhuǎn),把AC邊繞點A逆時針旋轉(zhuǎn),得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補三角形”,△AB'C′的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當△ABC是任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并證明你的猜想;(拓展應用)(3)如圖1.點A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點P是四邊形ABCD內(nèi)一點,且△APD是△BPC的“旋補三角形”,點P是“旋補中心”,請確定點P的位置(要求尺規(guī)作圖,不寫作法,保留作圖痕跡),并求BC的長.24.(10分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應線段CF.(1)求證:BE=DF;(2)當t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?25.(10分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.26.(12分)為給鄧小平誕辰周年獻禮,廣安市政府對城市建設進行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結(jié)果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點米遠(即米),小亮在點測得建筑物頂部的仰角(即)為.點、、、,在同一個平面內(nèi),點、、在同一條直線上,且,問建筑物高為多少米?27.(12分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.試判斷DE與⊙O的位置關(guān)系,并說明理由;過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.2、A【解析】分析:根據(jù)有理數(shù)的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.2除以任何一個不等于2的數(shù),都得2.3、D【解析】
根據(jù)兩圓的位置關(guān)系、直線和圓的位置關(guān)系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內(nèi)含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內(nèi)切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關(guān)系:設兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內(nèi)切;當0≤d<R-r(R>r)時兩圓內(nèi)含.4、D【解析】
根據(jù)數(shù)軸上點的位置,可得a,b,根據(jù)有理數(shù)的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用有理數(shù)的運算是解題關(guān)鍵.5、A【解析】
∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.6、B【解析】
由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.7、D【解析】
根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【點睛】本題主要考查函數(shù)模型及其應用.8、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.9、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.10、B【解析】
解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點睛】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關(guān)鍵.11、C【解析】
先將每個選項的二次根式化簡后再判斷.【詳解】解:A:,與不是同類二次根式;B:被開方數(shù)是2x,故與不是同類二次根式;C:=,與是同類二次根式;D:=2,與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的概念.12、B【解析】
根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
根據(jù)矩形的性質(zhì),直角三角形斜邊中線性質(zhì),三角形中位線性質(zhì)求出BO、OM、AM即可解決問題.【詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【點睛】本題看成矩形的性質(zhì)、三角形中位線定理、直角三角形斜邊中線性質(zhì)等知識,解題的關(guān)鍵是靈活應用中線知識解決問題,屬于中考??碱}型.14、20°【解析】
根據(jù)切線的性質(zhì)可知∠PAC=90°,由切線長定理得PA=PB,∠P=40°,求出∠PAB的度數(shù),用∠PAC﹣∠PAB得到∠BAC的度數(shù).【詳解】解:∵PA是⊙O的切線,AC是⊙O的直徑,∴∠PAC=90°.∵PA,PB是⊙O的切線,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案為20°.【點睛】本題考查了切線的性質(zhì),根據(jù)切線的性質(zhì)和切線長定理進行計算求出角的度數(shù).15、42【解析】
延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長AB交DC于H,作EG⊥AB于G,如圖所示:
則GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
設BH=x米,則CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故答案為42【點睛】本題考查了解直角三角形的應用-坡度、俯角問題;通過作輔助線運用勾股定理求出BH,得出EG是解決問題的關(guān)鍵.16、±4【解析】
根據(jù)平方差公式展開左邊即可得出答案.【詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【點睛】本題考查的平方差公式:.17、【解析】
作出D關(guān)于AB的對稱點D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】解:如圖:作出D關(guān)于AB的對稱點D’,連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為弧BC的中點,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關(guān)鍵.18、1【解析】
首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點睛】圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)證明見解析;(3)4.【解析】試題分析:(1)依據(jù)AE=EF,∠DEC=∠AEF=90°,即可證明△AEF是等腰直角三角形;(2)連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰直角三角形即可得出結(jié)論;(3)當AD=AC=AB時,四邊形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.試題解析:解:(1)如圖1.∵四邊形ABFD是平行四邊形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如圖2,連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖3,當AD=AC=AB時,四邊形ABFD是菱形,設AE交CD于H,依據(jù)AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.點睛:本題屬于四邊形綜合題,主要考查了全等三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)以及勾股定理等知識,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),尋找全等的條件是解題的難點.20、(1)24,120°;(2)見解析;(3)1000人【解析】
(1)由建模的人數(shù)除以占的百分比,求出調(diào)查的總?cè)藬?shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對應的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補全條形統(tǒng)計圖;(3)根據(jù)隨機取出人數(shù)獲獎的人數(shù)比,即可得到結(jié)果.【詳解】解:(1)該校參加航模比賽的總?cè)藬?shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補全條形統(tǒng)計圖如下:(3)估算今年參加航模比賽的獲獎人數(shù)約是2500×=1000(人).【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.21、(1)證明見解析;(2).【解析】試題分析:利用矩形角相等的性質(zhì)證明△DAE∽△AMB.試題解析:(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是邊BC的中點,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.22、4【解析】分析:代入45°角的余弦函數(shù)值,結(jié)合“負整數(shù)指數(shù)冪的意義”和“二次根式的相關(guān)運算法則”進行計算即可.詳解:原式=.點睛:熟記“特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的意義:(為正整數(shù))”是正確解答本題的關(guān)鍵.23、(1)①2;②3;(2)AD=12【解析】
(1)①根據(jù)等邊三角形的性質(zhì)可得出AB=AC=1、∠BAC=60,結(jié)合“旋補三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長度;
②由“旋補三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進而可得出△ABC≌△AB′C′(SAS),根據(jù)全等三角形的性質(zhì)可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長度;(2)AD=12BC,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據(jù)平行四邊形的性質(zhì)結(jié)合“旋補三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進而可證出△BAC≌△AB′E(SAS),根據(jù)全等三角形的性質(zhì)可得出BC=AE,由平行四邊形的對角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=12故答案為:①2;②3.(2)AD=12證明:在圖1中,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,BA=AB∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=12∴AD=12(3)在圖1中,作AB、CD的垂直平分線,交于點P,則點P為四邊形ABCD的外接圓圓心,過點P作PF⊥BC于點F.∵PB=PC,PF⊥BC,∴PF為△PBC的中位線,∴PF=12在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF=PB∴BC=2BF=4.【點睛】本題考查了等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、平行四邊形的性質(zhì)、解直角三角形、勾股定理以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)①利用解含30°角的直角三角形求出AD=12AC′;②牢記直角三角形斜邊上的中線等于斜邊的一半;(2)構(gòu)造平行四邊形,利用平行四邊形對角線互相平分找出AD=12AE=24、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時,△EPQ是直角三角形【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當∠EQP=90°時,如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當∠EPQ=90°時,如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時,△EPQ是直角三角形.【點睛】此題是菱形與動點問題,考查菱形的性質(zhì),三角形全等的判定定理,等腰三角形的性質(zhì),最短路徑問題,注意(3)中的直角沒有明確時應分情況討論解答.25、(1)(1,4)(2)(0,)或(0,-1)【解析】試題分析:(1)先求得點C的坐標,再由OA=OC得到點A的坐標,再根據(jù)拋物線的對稱性得到點B的坐標,利用待定系數(shù)法求得解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《科匠企業(yè)號介紹》課件
- DBJ51-T 190-2022 四川省裝配式支吊架抗震技術(shù)標準
- 2024年大學創(chuàng)新創(chuàng)業(yè)工作總結(jié)
- 《我的時間管理分享》課件
- 《村鎮(zhèn)銀行介紹》課件
- 新媒體春分營銷策略
- 酒店前臺話務員工作總結(jié)
- 企業(yè)生涯規(guī)劃圖譜
- 2023-2024年項目部安全培訓考試題及答案往年題考
- 2023年-2024年項目部管理人員安全教育培訓試題及答案(各地真題)
- 股權(quán)投資協(xié)議的風險控制
- 山西省晉中市2023-2024學年高一上學期期末考試 物理 含解析
- 裝卸工安全培訓課件
- 中成藥學完整版本
- 安全與急救學習通超星期末考試答案章節(jié)答案2024年
- 2024-2025學年度廣東省春季高考英語模擬試卷(解析版) - 副本
- 2024電力安全工器具及小型施工機具預防性試驗規(guī)程
- 基于單片機的2.4G無線通信系統(tǒng)
- 《建筑力學》期末機考資料
- 廣東省廣州市2023-2024學年三年級上學期英語期中試卷(含答案)
- DB11T 1282-2022 數(shù)據(jù)中心節(jié)能設計規(guī)范
評論
0/150
提交評論