版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
授課教授:葉春輝浙江大學(xué)遠(yuǎn)程教育學(xué)院2008年1月計(jì)量經(jīng)濟(jì)學(xué)基礎(chǔ)第6章虛擬變量
前面各章討論的變量都是可以直接用數(shù)字計(jì)量的(是可度量的),也即可以獲得其實(shí)際觀測(cè)值(如收入、消費(fèi)支出、物價(jià)水平、利潤(rùn)等等).這類(lèi)變量稱(chēng)作數(shù)量變量或數(shù)量因素。然而,在有些情況下,“質(zhì)”的因素(如職業(yè)、民族、性別、文化程度、地區(qū)、季節(jié)等等)也是重要解釋變量。例如,當(dāng)我們用建國(guó)以來(lái)的統(tǒng)計(jì)數(shù)據(jù)估計(jì)消費(fèi)函數(shù)時(shí),“改革開(kāi)放”這一質(zhì)的因素就是一個(gè)不應(yīng)忽略的解釋變量。如果質(zhì)的因素的影響是顯著的,回歸模型的參數(shù)就會(huì)因此而變化。例如,我國(guó)居民的消費(fèi)行為在改革開(kāi)放前后大不相同,因此消費(fèi)函數(shù)的參數(shù)也會(huì)隨之改變。再如.在飲料需求函數(shù)中:收入、價(jià)格與飲料需求量的關(guān)系是隨著季節(jié)變化而改變的。也就是說(shuō),在不同的季節(jié)回歸模型的參數(shù)也會(huì)有所不同。因此,如果忽略這種質(zhì)的因素,仍把模型中的參數(shù)看作是固定不變的,估計(jì)結(jié)果就不能正確描述經(jīng)濟(jì)變量之間的關(guān)系。質(zhì)的因素通常表明某種“品質(zhì)”或“屬性”是否存在。將這類(lèi)品質(zhì)或?qū)傩粤炕姆椒ㄖ痪褪菢?gòu)造取值為“1”或“0”的人工變量。
“1”表示這種屬性存在,“0”表示這種屬性不存在。例如,“1”可以表示改革開(kāi)放時(shí)期,“0”表示非改革開(kāi)放時(shí)期;“1”表示存在季節(jié)性影響,“0”表示不存在季節(jié)性影響;“1”表示南方,“0”表示北方,等等。這種取值為“1”和“0”的變量稱(chēng)為虛擬變量。又可稱(chēng)為啞變量,二進(jìn)制變量。【注】虛擬變量主要是用來(lái)代表質(zhì)的因素,但在有些情況下也可以用來(lái)代表數(shù)量因素。例如,在儲(chǔ)蓄函數(shù)中“年齡”是一個(gè)重要解釋變量。雖然“年齡”是一個(gè)數(shù)量因素,但由于不同年齡組的居民有不同的儲(chǔ)蓄行為,可以用虛擬變量表示各年齡組居民在儲(chǔ)蓄行為上的差異。例如,可以把居民分為兩個(gè)年齡組;第一組:20一40歲的居民第二組:40一60歲的居民用“1”表示第一年齡組,“0”表示第二年齡組,就可以估計(jì)年齡對(duì)儲(chǔ)蓄的影響。主要內(nèi)容第一節(jié)截距變動(dòng)的虛擬變量模型第二節(jié)多種分類(lèi)的虛擬變量模型第三節(jié)虛擬變量對(duì)斜率的影響
第四節(jié)例子第一節(jié)兩種分類(lèi)的虛擬變量
引例:假設(shè)某公司第i名員工的月工資為yi,另外定義一個(gè)虛擬變量D,取值為1時(shí)表示男性員工,取值為0時(shí)表示女性員工,現(xiàn)在忽視其他的變量對(duì)工資的影響,設(shè)模型為假設(shè)隨機(jī)誤差項(xiàng)滿足經(jīng)典回歸假設(shè),則:此模型就是一個(gè)最簡(jiǎn)單的虛擬變量模型。其中為女性員工的平均工資,為男性員工和女性員工平均工資之差。
現(xiàn)在我們加入一個(gè)定量變量x(比如工作年限),此時(shí)模型為:
如果參數(shù)是顯著的不為零,則說(shuō)明員工工資的性別歧視這一假設(shè)是成立的。例假定我們有一個(gè)包括城鄉(xiāng)居民家庭收支狀況的樣本,打算用這些數(shù)據(jù)估計(jì)消費(fèi)函數(shù)。由于城鎮(zhèn)居民家庭和農(nóng)村居民家庭在消費(fèi)水平上存在明顯差異,所以“地區(qū)”這個(gè)質(zhì)的因素是一個(gè)重要解釋變量。用一個(gè)虛擬變量來(lái)表示,消費(fèi)函數(shù)為:第i個(gè)家庭的消費(fèi)水平為第i個(gè)家庭的收入水平虛擬變量用D=1表示城鎮(zhèn)居民家庭這一特征,D=0表示農(nóng)村居民家庭這一特征,并假定隨機(jī)誤差項(xiàng)滿足經(jīng)典的假定。上面兩式分別為城鎮(zhèn)居民家庭和農(nóng)村居民家庭的消費(fèi)函數(shù),兩者有相同的斜率,但截距不同。其幾何圖形類(lèi)似上例。用最小二乘法估計(jì)模型:。得到估計(jì)值后對(duì)進(jìn)行t檢驗(yàn),若顯著地不為零,就認(rèn)為城鄉(xiāng)居民家庭在消費(fèi)行為上的差異是顯著的。結(jié)合上例,我們給出虛擬變量模型的幾個(gè)特性:1、以“0”,“1”取值的虛擬變量所反映的內(nèi)容可以隨意設(shè)定。在上例中,也可以指定D=1時(shí)為農(nóng)村居民家庭,而D=0為城鎮(zhèn)居民家庭。2、虛擬變量D=0代表的特征或狀態(tài),通常用于說(shuō)明基礎(chǔ)類(lèi)型?;A(chǔ)類(lèi)型是對(duì)比的基礎(chǔ)。在上例中,農(nóng)村居民家庭是對(duì)比的基礎(chǔ),從而也是基礎(chǔ)類(lèi)型。3、基礎(chǔ)類(lèi)型的截距系數(shù)被稱(chēng)為公共截距系數(shù),而系數(shù)稱(chēng)為差別截距系數(shù)。這是因?yàn)檎f(shuō)明D取值為1時(shí)的那種特征(或狀態(tài))的截距系數(shù)與基礎(chǔ)類(lèi)型的截距系數(shù)的差異。4.如果一個(gè)回歸模型有截距項(xiàng),對(duì)于具有兩種特征的質(zhì)的因素,則只需引入一個(gè)虛擬變量。在此例中,若以D=1表示城鎮(zhèn)居民家庭,則D=0就表示農(nóng)村居民家庭。如果不是這樣,而是對(duì)兩種特征引入兩個(gè)虛擬變量,模型就成為:為便于說(shuō)明問(wèn)題,假定樣本包含3個(gè)城鎮(zhèn)居民家庭和2個(gè)農(nóng)村居民家庭。于是,解釋變量的觀測(cè)值矩陣為:多重共線性是顯而易見(jiàn)的。城鎮(zhèn)居民家庭農(nóng)村居民家庭農(nóng)村居民家庭城鎮(zhèn)居民家庭例利用美國(guó)1940一1950年可支配收入和消費(fèi)支出的數(shù)據(jù)資料,可建立下面回歸模型:可支配收入消費(fèi)支出虛擬變量D=1時(shí)代表戰(zhàn)爭(zhēng)時(shí)期(1942—1945年),D=0時(shí)代表和平時(shí)期。用OLS法可以得到以下估計(jì)結(jié)果:Ct=-10.065+0.959xt
-55.4624D(-0.354)(10.724)(-9.397)參數(shù)估計(jì)值下面括號(hào)中的數(shù)字為t統(tǒng)計(jì)值。顯然,戰(zhàn)爭(zhēng)因素對(duì)消費(fèi)支出的影響是顯著的。上式還可以寫(xiě)成:D=1時(shí)表示戰(zhàn)爭(zhēng)時(shí)期的消費(fèi)函數(shù):D=0時(shí)表示和平時(shí)期的消費(fèi)函數(shù):前面談過(guò),如果一個(gè)質(zhì)的因素僅有兩種特征,只需引入一個(gè)虛擬變量。然而,許多質(zhì)的因素往往有兩個(gè)以上的特征。例如,我國(guó)有56個(gè)民族,因此“民族”這個(gè)質(zhì)的因素具有56種特征;一年有4個(gè)季節(jié),“季節(jié)”這個(gè)質(zhì)的因案就有4個(gè)特征。這時(shí),就要引入多個(gè)虛擬變量才能夠識(shí)別,因此模型中就會(huì)包含多個(gè)虛擬變量。在虛擬變量的設(shè)定中,一般情況下虛擬變量的個(gè)數(shù)總是小于質(zhì)的特征數(shù)(分類(lèi)數(shù)),比如考慮季節(jié)差別時(shí),將設(shè)定3個(gè)虛擬變量,考慮月差別就需要11個(gè)虛擬變量。
一般的規(guī)則是:如果一個(gè)質(zhì)因素有m種持征或狀態(tài),當(dāng)回歸模型含截距項(xiàng)時(shí),只需引入m一1個(gè)虛擬變量;當(dāng)回歸模型不含截距項(xiàng)時(shí),則m種特征需要引入m個(gè)虛擬變量。第二節(jié)、多種分類(lèi)的虛擬變量例如:在前面工資模型中如果考慮的是員工的受教育程度,可以將員工的分為:高中,本科和研究生三種。如果虛擬變量設(shè)為:高中畢業(yè)其他本科畢業(yè)其他研究生畢業(yè)其他則
將會(huì)出現(xiàn)多重共線性,因此我們需要去掉一個(gè)虛擬變量。假設(shè)模型為:
本科其他研究生其他高中:本科:研究生:模型變?yōu)椋汗烙?jì)出的回歸方程為:又如:假定用季度資料估計(jì)消費(fèi)函數(shù),可以把模型寫(xiě)成:其中yt為某季度的消費(fèi)支出,xt為某季度的收入。對(duì)于4個(gè)季度,引入3個(gè)虛擬變量:這里第四季度為基礎(chǔ)類(lèi)型,其截距項(xiàng)為第三節(jié)虛擬變量對(duì)斜率的影響
在工資的例子中,需要檢驗(yàn)工作年限在男性和女性之間的不同,我們假設(shè)截距不變,模型設(shè)為:
男性女性女性:男性:估計(jì)的回歸方程:工作年限在很多情形下,質(zhì)的因素不僅會(huì)改變模型的截距,還會(huì)同時(shí)影響模型的斜率。如果截距和斜率都發(fā)生了改變,模型為:
女性:男性:估計(jì)的回歸方程:上述兩個(gè)模型中,斜率的變化實(shí)際上是變量x的參數(shù)發(fā)生了變化,這種變化稱(chēng)作結(jié)構(gòu)性變化。男性女性設(shè)有兩個(gè)方程式分別為:【注】截距和斜率同時(shí)變動(dòng)的矩陣表達(dá)的例:或其中,D1和D2為虛擬變量。所有第一組觀察值所有第二組觀察值所有第一組觀察值在第二組觀察到X的值D1系數(shù)衡量截距的差別,而D2系數(shù)則衡量斜率的差別。又設(shè)有三個(gè)方程式,分別是:這三組方程式可歸并為:(注意D2既不是1。也不是0)或所有二、三期觀察值所有第一期觀察值在第三期觀察到x的值所有第一、二期觀察值例1、中國(guó)城鎮(zhèn)居民家庭的儲(chǔ)蓄函數(shù)根據(jù)我國(guó)城鎮(zhèn)居民家庭1955-1990年人均收入和人均儲(chǔ)蓄的數(shù)據(jù)資料,可以建立如下儲(chǔ)蓄模型:人均收入人均儲(chǔ)蓄以1955年的物價(jià)水平為100,從St和xt中扣除了物價(jià)上漲因素,t代表年份(t=1955,1956,…,1990),用OLS法可得估計(jì)結(jié)果為:第四節(jié)例子上面的模型隱含著一個(gè)重要假定:我國(guó)城鎮(zhèn)居民家庭的儲(chǔ)蓄行為在l955年至1990年期間始終是不變的。但這一假定未必能夠成立,因?yàn)榕c居民儲(chǔ)蓄有關(guān)的許多重要因素在1979年以后發(fā)生了明顯變化,主要表現(xiàn)為:
(1)在經(jīng)濟(jì)體制改革之前,我國(guó)居民的收入一直在低水平上徘徊,因而平均儲(chǔ)蓄傾向很低,積蓄很少;1979年之后,我國(guó)居民的收入水平迅速提高,與此同時(shí),居民儲(chǔ)蓄也在大幅增長(zhǎng)。由此看來(lái),在1979年前后兩個(gè)時(shí)期,我國(guó)居民的儲(chǔ)蓄行為有顯著差異。
(2)在改革開(kāi)放前,我國(guó)的消費(fèi)品市場(chǎng)存在嚴(yán)重短缺的現(xiàn)象。許多商品憑票限量供應(yīng),消費(fèi)者既使有錢(qián)也難以買(mǎi)到所需的商品,而不得不把錢(qián)暫時(shí)存起來(lái)。因此,這一時(shí)期儲(chǔ)蓄帶有“非自愿”的性質(zhì);而在1979年之后,消費(fèi)品市場(chǎng)日趨豐富,大部分商品取消了票證限制,消費(fèi)者儲(chǔ)蓄的主要目的之一是購(gòu)買(mǎi)高檔耐用消費(fèi)品,儲(chǔ)蓄不再具有“被迫“性質(zhì)。為了驗(yàn)證城鎮(zhèn)居民儲(chǔ)蓄行為的變化,建立如下截距和斜率同時(shí)變動(dòng)的模型:其中D為虛擬變量:用最小二乘法可得下面的估計(jì)結(jié)果:參數(shù)估計(jì)值下面括號(hào)中的數(shù)字為t統(tǒng)計(jì)值。顯見(jiàn),儲(chǔ)蓄模型的截距和斜率在1979年前后有顯著差異。上式可以進(jìn)一步寫(xiě)成:1979年以前:1979年以后估計(jì)結(jié)果表明:1979年之前,我國(guó)城鎮(zhèn)居民的邊際儲(chǔ)蓄傾向僅為0.004,即收入增加一元儲(chǔ)蓄平均增加0.4分;而在1979一1990年期間,城鎮(zhèn)居民的邊際儲(chǔ)蓄傾向高達(dá)0.256。但在沒(méi)有引入虛擬變量的模型中,邊際儲(chǔ)蓄傾向卻是0.17。很明顯,它既不代表經(jīng)濟(jì)體制改革前城鎮(zhèn)居民的儲(chǔ)蓄行為,也不能正確描述1979年后城鎮(zhèn)居民收入與儲(chǔ)蓄的關(guān)系。注意:由于忽略了“體制改革”這一重要因素,沒(méi)有虛擬變量的模型存在明顯的自相關(guān)問(wèn)題(D.W=0.298),引入虛擬變量后的模型考慮了“體制改革”這一因素,從而消除了自相關(guān)(D.W=1.67);同時(shí),模型的擬合優(yōu)度也大大提高,判定系數(shù)R2的值從0.833上升為0.967。這些都表明,正確使用虛擬變量可以改善估計(jì)的效果。按月份或季節(jié)的許多時(shí)間序列數(shù)據(jù)呈現(xiàn)為季節(jié)模式,常常需要去掉由于季節(jié)的變化對(duì)時(shí)間序列的影響,稱(chēng)為季節(jié)調(diào)整。例2、季節(jié)性調(diào)整如:一家百貨公司的銷(xiāo)售額嚴(yán)重受季節(jié)性的影響,引進(jìn)前面所述的三個(gè)虛擬變量D2,D3,D4,現(xiàn)有該公司季節(jié)銷(xiāo)售額的數(shù)據(jù):年度季節(jié)銷(xiāo)售額D2D3D4銷(xiāo)售額估計(jì)值19961100009.821510014.831601015.643000130.4199751100010.661510015.671701016.483100131.2年度季節(jié)銷(xiāo)售額D2D3D4銷(xiāo)售額估計(jì)值199891100011.4101710016.4111701017.2123100132.01999131200012.2141710017.2151801018.0163300132.82000171300013.0181810018.0191801018.8203500133.6設(shè)模型為:用OLS法估計(jì)得:將虛擬變數(shù)代入的:第1季度:第2季度:第3季度:第4季度:一般地對(duì)某些受季節(jié)性影響的商品.假設(shè)銷(xiāo)售模型為:其中C表示銷(xiāo)售量,x1,x2,…xk表示決定銷(xiāo)量的解釋變量.為了把季節(jié)變化對(duì)銷(xiāo)售的影響反映到模型中,引進(jìn)三個(gè)虛擬變量:第2季度其它第3季度其它第4季度其它而第1季度用D2=D3=D4=0表示,這時(shí)銷(xiāo)售的季節(jié)回歸模型可寫(xiě)為:例3、我國(guó)貨幣流通的季度數(shù)據(jù)如表,可以看出,貨幣流通量和季節(jié)有關(guān),如果在直角坐標(biāo)上表示出來(lái),這種隨季節(jié)發(fā)生的周期性更加明顯。為了消除季節(jié)因素的影響,以便集中考慮主要因素對(duì)貸幣流通量的作用,我們引進(jìn)虛擬變量。假定季節(jié)因素的作用是使貨幣流通量的平均值發(fā)生變化,取第四季度為基本期,設(shè)定如下模型:其中:Yt=貨幣流通量,Xt=企業(yè)存款額第1季度其它第2季度其它第3季度其它模型表示貨幣流通與工業(yè)生產(chǎn)水平(用企業(yè)存款額代表)以及季節(jié)因素有關(guān)。利用表中數(shù)據(jù),回歸結(jié)果如下:由于D1.D3的t值很小,可以認(rèn)為對(duì)Y:無(wú)顯著作用,第二季季度經(jīng)檢驗(yàn)仍屬不太顯著,但t值較高,可以認(rèn)為第二季度的季節(jié)因素對(duì)貨幣流通量存在顯著影響。第二季度的回歸方程估計(jì)式為:所以,第一、三、四季度僅存在生產(chǎn)水平對(duì)貨幣流通量的影響,回歸方程為:例4、設(shè)定臨界指標(biāo)的虛擬變量模型。為了分離異常因素的影響,還可以設(shè)定臨界指標(biāo)X*,當(dāng)Xt大子(或小于)這個(gè)值時(shí),則認(rèn)為是異常時(shí)期,引入的虛擬變量Dt,取1(或0),這樣得到的樣本回歸方程的圖形是一條折線,表示出異常因素影響下,被解釋變量變化過(guò)程的階段性。以我國(guó)社會(huì)總產(chǎn)值Y隨時(shí)間X而增長(zhǎng)的過(guò)程為例,建國(guó)以來(lái),經(jīng)歷了不同的時(shí)期,設(shè)定如下模型:其中臨界值為:=9(1960年),=12(1963年)=24(1975年)歷史數(shù)據(jù)YXD1D2D3YXD1D2D3195210001969180101953200019701901019543000197120010195540001972210101956500019732201019576000197423010195870001975240101959800019762500119609000197726001196110100197827001196211100197928001196312100198029001196413010198130001196514010198231001196615010198332001196716010198433001196817010198534001回歸分析結(jié)果如下:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024民事訴訟委托代理合同
- 2024工程維修合同樣本
- 2024種豬銷(xiāo)售合同范文
- 2024廣告互換合同范文
- 2024個(gè)人汽車(chē)的租賃合同范本
- 權(quán)威借款合同范文匯編
- 2024的進(jìn)出口貿(mào)易合同范文
- 品牌代理合作協(xié)議
- 2024小產(chǎn)權(quán)房買(mǎi)賣(mài)合同模板2
- 2024臨時(shí)工合同協(xié)議書(shū)關(guān)于臨時(shí)工的協(xié)議書(shū)
- 國(guó)開(kāi)(甘肅)2024年春《地域文化(專(zhuān))》形考任務(wù)1-4終考答案
- 檔案整理及數(shù)字化服務(wù)方案(技術(shù)標(biāo) )
- 建筑樁基技術(shù)規(guī)范 JGJ942008
- C站使用說(shuō)明JRC
- 習(xí)作:推薦一個(gè)好地方 推薦ppt課件
- 角的度量 華應(yīng)龍(課堂PPT)
- 公路銑刨機(jī)整機(jī)的設(shè)計(jì)含全套CAD圖紙
- 機(jī)器人學(xué)課程教學(xué)大綱
- 浙江世貿(mào)君瀾酒店集團(tuán)介紹
- GHTF—質(zhì)量管理體系--過(guò)程驗(yàn)證指南中文版
- 鋁及鋁合金焊接作業(yè)指導(dǎo)書(shū)
評(píng)論
0/150
提交評(píng)論