新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想01 運(yùn)用分類討論的思想方法解題(精講精練)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想01 運(yùn)用分類討論的思想方法解題(精講精練)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想01 運(yùn)用分類討論的思想方法解題(精講精練)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想01 運(yùn)用分類討論的思想方法解題(精講精練)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想01 運(yùn)用分類討論的思想方法解題(精講精練)(解析版)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

思想01運(yùn)用分類討論的思想方法解題【命題規(guī)律】高考命題中,以知識為載體,以能力立意、思想方法為靈魂,以核心素養(yǎng)為統(tǒng)領(lǐng),兼顧試題的基礎(chǔ)性、綜合性、應(yīng)用性和創(chuàng)新性,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值.高考試題一是著眼于知識點(diǎn)新穎巧妙的組合,二是著眼于對數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查.如果說數(shù)學(xué)知識是數(shù)學(xué)的內(nèi)容,可用文字和符號來記錄和描述,那么數(shù)學(xué)思想方法則是數(shù)學(xué)的意識,重在領(lǐng)會、運(yùn)用,屬于思維的范疇,用于對數(shù)學(xué)問題的認(rèn)識、處理和解決.高考中常用到的數(shù)學(xué)思想主要有分類討論思想、數(shù)形結(jié)合思想、函數(shù)與方程思想、轉(zhuǎn)化與化歸思想等.【核心考點(diǎn)目錄】核心考點(diǎn)一:由情境的規(guī)則引起的分類討論核心考點(diǎn)二:由定義引起的分類討論核心考點(diǎn)三:由平面圖形的可變性引起的分類討論核心考點(diǎn)四:由變量的范圍引起的分類討論核心考點(diǎn)五:由空間圖形的可變性引起的分類討論【真題回歸】1.(2022·浙江·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)已知SKIPIF1<0,曲線SKIPIF1<0上不同的三點(diǎn)SKIPIF1<0處的切線都經(jīng)過點(diǎn)SKIPIF1<0.證明:(?。┤鬝KIPIF1<0,則SKIPIF1<0;(ⅱ)若SKIPIF1<0,則SKIPIF1<0.(注:SKIPIF1<0是自然對數(shù)的底數(shù))【解析】(1)SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的減區(qū)間為SKIPIF1<0,SKIPIF1<0的增區(qū)間為SKIPIF1<0.(2)(ⅰ)因?yàn)檫^SKIPIF1<0有三條不同的切線,設(shè)切點(diǎn)為SKIPIF1<0,故SKIPIF1<0,故方程SKIPIF1<0有3個(gè)不同的根,該方程可整理為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),因?yàn)镾KIPIF1<0有3個(gè)不同的零點(diǎn),故SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,整理得到:SKIPIF1<0且SKIPIF1<0,此時(shí)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0上的減函數(shù),故SKIPIF1<0,故SKIPIF1<0.(ⅱ)當(dāng)SKIPIF1<0時(shí),同(ⅰ)中討論可得:故SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),不妨設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0有3個(gè)不同的零點(diǎn),故SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,整理得到:SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則方程SKIPIF1<0即為:SKIPIF1<0即為SKIPIF1<0,記SKIPIF1<0則SKIPIF1<0為SKIPIF1<0有三個(gè)不同的根,設(shè)SKIPIF1<0,SKIPIF1<0,要證:SKIPIF1<0,即證SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,而SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故即證:SKIPIF1<0,即證:SKIPIF1<0即證:SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為增函數(shù),故SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0為增函數(shù),故SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,故原不等式得證:2.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求a的取值范圍;(3)設(shè)SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0為連續(xù)不間斷函數(shù),故存在SKIPIF1<0,使得SKIPIF1<0,總有SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0為增函數(shù),故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0為增函數(shù),故SKIPIF1<0,與題設(shè)矛盾.若SKIPIF1<0,則SKIPIF1<0,下證:對任意SKIPIF1<0,總有SKIPIF1<0成立,證明:設(shè)SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為減函數(shù),故SKIPIF1<0即SKIPIF1<0成立.由上述不等式有SKIPIF1<0,故SKIPIF1<0總成立,即SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,

所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0.綜上,SKIPIF1<0.(3)取SKIPIF1<0,則SKIPIF1<0,總有SKIPIF1<0成立,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0對任意的SKIPIF1<0恒成立.所以對任意的SKIPIF1<0,有SKIPIF1<0,整理得到:SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,故不等式成立.3.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的最大值;(2)若SKIPIF1<0恰有一個(gè)零點(diǎn),求a的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;所以SKIPIF1<0;(2)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;所以SKIPIF1<0,此時(shí)函數(shù)無零點(diǎn),不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;又SKIPIF1<0,由(1)得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則存在SKIPIF1<0,使得SKIPIF1<0,所以SKIPIF1<0僅在SKIPIF1<0有唯一零點(diǎn),符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0有唯一零點(diǎn),符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;此時(shí)SKIPIF1<0,由(1)得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,此時(shí)SKIPIF1<0存在SKIPIF1<0,使得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0有一個(gè)零點(diǎn),在SKIPIF1<0無零點(diǎn),所以SKIPIF1<0有唯一零點(diǎn),符合題意;綜上,a的取值范圍為SKIPIF1<0.【方法技巧與總結(jié)】當(dāng)被研究的問題出現(xiàn)多種情況且綜合考慮無法深入時(shí),我們通常將可能出現(xiàn)的所有情況分別進(jìn)行討論,得出每種情況下相應(yīng)的結(jié)論,這就是分類討論的思想,包含分類與整合兩部分,既化整為零,各個(gè)擊破,又集零為整.基本步驟是:(1)研究討論的必要性,確定討論對象;(2)確定分類依據(jù),并按標(biāo)準(zhǔn)分類;(3)逐類解決,獲得各類的結(jié)果;(4)歸納整合,得到結(jié)果.分類的基本原則是:(1)標(biāo)準(zhǔn)統(tǒng)一,不重不漏;(2)層次明晰,不混不亂.分類討論應(yīng)用的熱點(diǎn):(1)由概念、定義、公式、定理、性質(zhì)等引起的分類討論,如直線的斜率是否存在,冪、指數(shù)、對數(shù)函數(shù)的單調(diào)性,等比數(shù)列的公比是否為等.(2)由數(shù)學(xué)運(yùn)算規(guī)則引起的分類討論,如除法運(yùn)算中分母不為零,偶次方根為非負(fù)數(shù),不等式兩邊同乘(除)以一個(gè)數(shù)(式)的符號等.(3)由變量的范圍引起的分類討論,如對數(shù)的真數(shù)與底數(shù)的范圍,指數(shù)運(yùn)算中底數(shù)的范圍,函數(shù)在不同區(qū)間上單調(diào)性受參變量的影響等.(4)由圖形的可變性引起的分類討論,如圖形類型、位置,點(diǎn)所在的象限,角大小的可能性等.(5)由情境的規(guī)則引起的分類討論,情境問題的規(guī)則在解決數(shù)學(xué)問題時(shí)常需要分類討論思想,如體育比賽的規(guī)則等.【核心考點(diǎn)】核心考點(diǎn)一:由情境的規(guī)則引起的分類討論【典型例題】例1.多項(xiàng)選擇題給出的四個(gè)選項(xiàng)中會有多個(gè)選項(xiàng)符合題目要求.全部選對的得5分,有選錯的得0分,部分選對的得3分.若選項(xiàng)中有SKIPIF1<0其中SKIPIF1<0個(gè)選項(xiàng)符合題目要求,隨機(jī)作答該題時(shí)SKIPIF1<0至少選擇一個(gè)選項(xiàng)SKIPIF1<0所得的分?jǐn)?shù)為隨機(jī)變量SKIPIF1<0其中SKIPIF1<0,則有(

)A. B.C. D.【答案】B【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的可能情況為0,3,5選擇的情況共有:SKIPIF1<0種;,,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的可能情況為0,3,5選擇的情況共有:SKIPIF1<0種;,,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的可能情況為3,5選擇的情況共有:SKIPIF1<0種;,,所以對于AB:,,所以,故A錯誤,B正確;對于CD:,,所以,故CD錯誤;故選:B例2.甲、乙、丙、丁進(jìn)行乒乓球比賽,比賽規(guī)則如下:第一輪:甲和乙進(jìn)行比賽,同時(shí)丙和丁進(jìn)行比賽,兩個(gè)獲勝者進(jìn)入勝者組,兩個(gè)敗者進(jìn)入敗者組;第二輪:勝者組進(jìn)行比賽,同時(shí)敗者組進(jìn)行比賽,敗者組中失敗的選手淘汰;第三輪:敗者組的勝者與勝者組的敗者進(jìn)行比賽,失敗的選手淘汰;第四輪:第三輪中的勝者與第二輪中勝者組的勝者進(jìn)行決賽,勝者為冠軍.已知甲與乙、丙、丁比賽,甲的勝率分別為SKIPIF1<0;乙與丙、丁比賽,乙的勝率分別為SKIPIF1<0;丙與丁比賽,丙的勝率為SKIPIF1<0任意兩場比賽之間均相互獨(dú)立.SKIPIF1<0求丙在第二輪被淘汰的概率;SKIPIF1<0在丙在第二輪被淘汰的條件下,求甲所有比賽全勝并獲得冠軍的概率.【解析】解:SKIPIF1<0若丙在第二輪被淘汰,則根據(jù)規(guī)則,第一輪中丙和丁比賽,丙為敗者的概率為SKIPIF1<0,而甲與乙比賽的敗者分兩種情況,若第二輪甲進(jìn)入敗者組,其概率為SKIPIF1<0,則第二輪丙被淘汰的概率SKIPIF1<0;若第二輪乙進(jìn)入敗者組,其概率為SKIPIF1<0,第二輪丙被淘汰的概率SKIPIF1<0故丙在第二輪被淘汰的概率為SKIPIF1<0SKIPIF1<0第一輪甲與乙比賽中,甲獲勝進(jìn)入勝者組的概率為SKIPIF1<0,并且與丁進(jìn)行第二輪比賽,第二輪勝者組比賽甲獲勝的概率為SKIPIF1<0,丁與乙進(jìn)行第三輪比賽,故分兩種情況,若第三輪乙獲勝,乙獲勝的概率為SKIPIF1<0,甲與乙進(jìn)行決賽,甲獲勝的概率為SKIPIF1<0,此時(shí)甲獲得冠軍的概率為SKIPIF1<0;若第三輪丁獲勝,丁獲勝的概率為SKIPIF1<0,甲、丁進(jìn)行決賽,甲獲勝的概率為SKIPIF1<0,此時(shí)甲獲得冠軍的概率為SKIPIF1<0設(shè)“丙在第二輪被淘汰”為事件A,“甲所有比賽全勝并獲得冠軍”為事件B,則SKIPIF1<0例3.一種微生物群體可以經(jīng)過自身繁殖不斷生存下來,設(shè)一個(gè)這種微生物為第0代,經(jīng)過一次繁殖后為第1代,再經(jīng)過一次繁殖后為第2代……,該微生物每代繁殖的個(gè)數(shù)是相互獨(dú)立的且有相同的分布列,設(shè)X表示1個(gè)微生物個(gè)體繁殖下一代的個(gè)數(shù),SKIPIF1<0SKIPIF1<0已知SKIPIF1<0,求SKIPIF1<0;SKIPIF1<0設(shè)p表示該種微生物經(jīng)過多代繁殖后臨近滅絕的概率,p是關(guān)于x的方程:SKIPIF1<0的一個(gè)最小正實(shí)根,求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0根據(jù)你的理解說明SKIPIF1<0問結(jié)論的實(shí)際含義.【解析】SKIPIF1<0SKIPIF1<0設(shè),因?yàn)镾KIPIF1<0,故,若,則SKIPIF1<0,故SKIPIF1<0,因?yàn)?,,故有兩個(gè)不同零點(diǎn)SKIPIF1<0,且SKIPIF1<0,且時(shí),;時(shí),;故在,上為增函數(shù),在上為減函數(shù),若SKIPIF1<0,因?yàn)樵跒樵龊瘮?shù)且,而當(dāng)時(shí),因?yàn)樵谏蠟闇p函數(shù),故,故1為SKIPIF1<0的一個(gè)最小正實(shí)根,若SKIPIF1<0,因?yàn)榍以谏蠟闇p函數(shù),故1為SKIPIF1<0的一個(gè)最小正實(shí)根,綜上,若,則SKIPIF1<0若,則SKIPIF1<0,故SKIPIF1<0此時(shí),,故有兩個(gè)不同零點(diǎn)SKIPIF1<0,且SKIPIF1<0,且時(shí),;時(shí),;故在,上為增函數(shù),在上為減函數(shù),而,故,又,故在存在一個(gè)零點(diǎn)p,且SKIPIF1<0所以p為SKIPIF1<0的一個(gè)最小正實(shí)根,此時(shí)SKIPIF1<0,故當(dāng)時(shí),SKIPIF1<0SKIPIF1<0意義:每一個(gè)該種微生物繁殖后代的平均數(shù)不超過1,則若干代后必然臨近滅絕,若繁殖后代的平均數(shù)超過1,則若干代后還有繼續(xù)繁殖的可能.核心考點(diǎn)二:由定義引起的分類討論【典型例題】例4.已知數(shù)列滿足SKIPIF1<0求數(shù)列的通項(xiàng)公式;SKIPIF1<0求數(shù)列的前n項(xiàng)和SKIPIF1<0【解析】解:SKIPIF1<0因?yàn)?,所以?dāng)SKIPIF1<0時(shí),;當(dāng)SKIPIF1<0時(shí),,故,則;經(jīng)檢驗(yàn):SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0由SKIPIF1<0知,令SKIPIF1<0,得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;綜上:例5.設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0SKIPIF1<0求數(shù)列SKIPIF1<0的通項(xiàng)公式;SKIPIF1<0若求數(shù)列SKIPIF1<0的前15項(xiàng)的和.【解析】解:SKIPIF1<0由題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,化簡整理,得SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,故SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)n為奇數(shù)時(shí),SKIPIF1<0當(dāng)n為偶數(shù)時(shí),SKIPIF1<0,SKIPIF1<0所以數(shù)列SKIPIF1<0的前15項(xiàng)和為SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例6.已知正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,如果SKIPIF1<0都有SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0為SKIPIF1<0的前n項(xiàng)和,則當(dāng)SKIPIF1<0取得最大值時(shí),n的值等于(

)A.17 B.18 C.19 D.20【答案】D【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,整理得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即數(shù)列SKIPIF1<0是一個(gè)以1為首項(xiàng),1為公差的等差數(shù)列,所以SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值.故選:SKIPIF1<0核心考點(diǎn)三:由平面圖形的可變性引起的分類討論【典型例題】例7.SKIPIF1<0中,內(nèi)角A,B,C的對邊分別為a,b,SKIPIF1<0已知SKIPIF1<0,SKIPIF1<0SKIPIF1<0求角SKIPIF1<0SKIPIF1<0若AC邊上的點(diǎn)D滿足SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積.【解析】解:SKIPIF1<0在SKIPIF1<0中,由正弦定理可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0化簡可得:SKIPIF1<0SKIPIF1<0兩邊平方得:SKIPIF1<0③在SKIPIF1<0中,由余弦定理:SKIPIF1<0化簡得:SKIPIF1<0④,由③④可得:SKIPIF1<0SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0例8.若恰有三組不全為0的實(shí)數(shù)對SKIPIF1<0、SKIPIF1<0滿足關(guān)系式SKIPIF1<0,則實(shí)數(shù)t的所有可能的值為__________.【答案】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【解析】由已知得SKIPIF1<0,整理得SKIPIF1<0,看成有且僅有三條直線滿足SKIPIF1<0和SKIPIF1<0到直線不過原點(diǎn)SKIPIF1<0的距離t相等.由SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,此時(shí)易得符合題意的直線l為線段AB的垂直平分線SKIPIF1<0以及直線AB平行的兩條直線SKIPIF1<0和SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),有4條直線l會使得點(diǎn)SKIPIF1<0和SKIPIF1<0到它們的距離相等,注意到l不過原點(diǎn),所以當(dāng)其中一條直線過原點(diǎn)時(shí),會作為增根被舍去.設(shè)點(diǎn)A到l的距離為d,①作為增根被舍去的直線l,過原點(diǎn)和A,B的中點(diǎn)SKIPIF1<0,其方程為SKIPIF1<0,此時(shí)SKIPIF1<0,符合;②作為增根被舍去的直線l,過原點(diǎn)且以SKIPIF1<0為方向向量,其方程為SKIPIF1<0,此時(shí),SKIPIF1<0,符合;綜上,滿足題意的實(shí)數(shù)t為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0例9.過雙曲線C:SKIPIF1<0的右焦點(diǎn)F作直線l,且直線l與雙曲線C的一條漸近線垂直,垂足為A,直線l與另一條漸近線交于點(diǎn)SKIPIF1<0已知O為坐標(biāo)原點(diǎn),若SKIPIF1<0的內(nèi)切圓的半徑為SKIPIF1<0,則雙曲線C的離心率為__________.【答案】SKIPIF1<0或2【解析】若SKIPIF1<0在y軸的同側(cè),不妨設(shè)A在第一象限,如圖,設(shè)SKIPIF1<0的內(nèi)切圓的圓心為M,則M在SKIPIF1<0的平分線Ox上,過M分別作SKIPIF1<0于N,SKIPIF1<0于T,由SKIPIF1<0得四邊形MTAN為正方形,由焦點(diǎn)到漸近線的距離為b,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,從而可得SKIPIF1<0若SKIPIF1<0在y軸的兩側(cè),不妨設(shè)A在第一象限,如圖,易得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故答案為SKIPIF1<0或SKIPIF1<0核心考點(diǎn)四:由變量的范圍引起的分類討論【典型例題】例10.已知函數(shù)SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).SKIPIF1<0求證:SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn);SKIPIF1<0求證:有且僅有兩個(gè)不同的零點(diǎn).【解析】SKIPIF1<0證明:設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有唯一的零點(diǎn)SKIPIF1<0,所以命題得證,SKIPIF1<0證明:SKIPIF1<0由SKIPIF1<0知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;所以SKIPIF1<0在SKIPIF1<0上存在唯一的極大值點(diǎn)SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恰有一個(gè)零點(diǎn),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也恰有一個(gè)零點(diǎn),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上沒有零點(diǎn).SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上沒有零點(diǎn).綜上,SKIPIF1<0有且僅有兩個(gè)不同的零點(diǎn).例11.已知函數(shù)的圖像經(jīng)過點(diǎn).SKIPIF1<0確定a的值,并討論函數(shù)的極值點(diǎn):SKIPIF1<0設(shè),若當(dāng)SKIPIF1<0時(shí),,求實(shí)數(shù)m的取值范圍.【解析】解:SKIPIF1<0因?yàn)閳D象過,所以SKIPIF1<0,即SKIPIF1<0,所以由SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0單調(diào)遞增,無極值點(diǎn);②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0是函數(shù)的極小值點(diǎn),無極大值點(diǎn).則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),則存在唯一的SKIPIF1<0使SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0綜上,實(shí)數(shù)m的取值范圍為例12.已知函數(shù)SKIPIF1<0是自然對數(shù)的底數(shù)SKIPIF1<0SKIPIF1<0若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;SKIPIF1<0若SKIPIF1<0,試討論SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù).SKIPIF1<0參考數(shù)據(jù):SKIPIF1<0【解析】解:SKIPIF1<0解:SKIPIF1<0,則SKIPIF1<0,定義域?yàn)镽,SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;SKIPIF1<0解:由已知SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0當(dāng)時(shí),SKIPIF1<0;當(dāng)時(shí),SKIPIF1<0,SKIPIF1<0在上單調(diào)遞增,在上單調(diào)遞減,即SKIPIF1<0在上單調(diào)遞增,在上單調(diào)遞減.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在上單調(diào)遞增,上單調(diào)遞減.SKIPIF1<0,,又SKIPIF1<0,SKIPIF1<0由函數(shù)零點(diǎn)存在性定理可得,此時(shí)SKIPIF1<0在SKIPIF1<0上僅有一個(gè)零點(diǎn);②若SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0在上單調(diào)遞增,在上單調(diào)遞減,而SKIPIF1<0,SKIPIF1<0,,使得SKIPIF1<0,SKIPIF1<0,且當(dāng)、時(shí),SKIPIF1<0;當(dāng)時(shí),SKIPIF1<0SKIPIF1<0在和上單調(diào)遞減,在上單調(diào)遞增.SKIPIF1<0,,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0由零點(diǎn)存在性定理可得,SKIPIF1<0在和內(nèi)各有一個(gè)零點(diǎn),即此時(shí)SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn).綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上僅有一個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn).核心考點(diǎn)五:由空間圖形的可變性引起的分類討論【典型例題】例13.正方體SKIPIF1<0棱長為2,動點(diǎn)P在線段SKIPIF1<0上SKIPIF1<0含端點(diǎn)SKIPIF1<0,以下結(jié)論不正確的為(

)A.三棱錐SKIPIF1<0的體積為定值SKIPIF1<0B.過P,B,SKIPIF1<0三點(diǎn)若可作正方體的截面,則截面圖形為三角形或平面四邊形C.當(dāng)點(diǎn)P和SKIPIF1<0重合時(shí),三棱錐SKIPIF1<0的外接球體積為SKIPIF1<0D.直線PD與面SKIPIF1<0所成角的正弦值的范圍為SKIPIF1<0【答案】D【解析】如圖,對于A選項(xiàng),因?yàn)镾KIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以點(diǎn)P到平面SKIPIF1<0的距離等于點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離,SKIPIF1<0SKIPIF1<0,A對;對于B,①當(dāng)P,SKIPIF1<0重合時(shí),過P,B,SKIPIF1<0三點(diǎn)作正方體的截面,則所得的截面圖形為平面四邊形SKIPIF1<0②當(dāng)P為SKIPIF1<0與SKIPIF1<0的交點(diǎn),即P為SKIPIF1<0的中點(diǎn)時(shí),過P,B,SKIPIF1<0三點(diǎn)作正方體的截面,則所得的截面圖形為三角形SKIPIF1<0,B對;對于C,當(dāng)點(diǎn)P與SKIPIF1<0重合時(shí),此時(shí)三棱錐為SKIPIF1<0,設(shè)SKIPIF1<0的中點(diǎn)為O,因?yàn)镾KIPIF1<0,可得SKIPIF1<0所以三棱錐SKIPIF1<0的外接球的球心為SKIPIF1<0的中點(diǎn),其半徑為SKIPIF1<0,所以三棱錐SKIPIF1<0的外接球的體積為SKIPIF1<0,C對;對于D,由A知,設(shè)點(diǎn)P到平面SKIPIF1<0的距離為h,則由SKIPIF1<0,得SKIPIF1<0,當(dāng)P,SKIPIF1<0重合時(shí),SKIPIF1<0取得最小值SKIPIF1<0,當(dāng)P,SKIPIF1<0重合時(shí),SKIPIF1<0取得最大值SKIPIF1<0,設(shè)直線PD與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,D錯.故選SKIPIF1<0例14.兩條異面直線a,b所成的角為SKIPIF1<0,在直線a,b上分別取點(diǎn)A,E和點(diǎn)B,F(xiàn),使SKIPIF1<0,且SKIPIF1<0已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則線段AB的長為(

)A.8 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由已知得SKIPIF1<0,兩邊平方可得SKIPIF1<0……①,因?yàn)镾KIPIF1<0,SKIPIF1<0,異面直線a與b所成的角為SKIPIF1<0,所以EA,BF所成的角為SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入①式得,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),代入上式可得舍去SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),代入上式可得,故AB的長度為SKIPIF1<0故選SKIPIF1<0例15.(多選題)如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0為垂足點(diǎn),F(xiàn)為BD中點(diǎn),則下列結(jié)論正確的是(

)A.若AD的長為定值,則該三棱錐外接球的半徑也為定值B.若AC的長為定值,則該三棱錐內(nèi)切球的半徑也為定值C.若BD的長為定值,則EF的長也為定值D.若CD的長為定值,則SKIPIF1<0的值也為定值【答案】ACD【解析】對于A,將三棱錐補(bǔ)成長方體,易知該三棱錐的外接球即為長方體的外接球,所以AD為外接球的直徑2R,所以該三棱錐外接球的半徑也為定值,故A正確;對于B,因?yàn)镾KIPIF1<0平面BCD,CD,SKIPIF1<0平面BCD,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,BC,SKIPIF1<0平面ABC,所以SKIPIF1<0平面ABC,因?yàn)镾KIPIF1<0平面ABC,所以SKIPIF1<0,假設(shè)內(nèi)切球的球心為O,第一種情況不妨假設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)內(nèi)切球的半徑為SKIPIF1<0,根據(jù)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解SKIPIF1<0第二種情況不妨假設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)內(nèi)切球的半徑為SKIPIF1<0,根據(jù)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,綜上所述,當(dāng)AC的長為定值,三棱錐內(nèi)切球的半徑不為定值,故B錯誤;對于C和D,以C點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,如圖所示,假設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镋在AC上,所以設(shè)SKIPIF1<0,則SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以當(dāng)BD的長為定值時(shí),EF的長也為定值;當(dāng)CD的長為定值,則SKIPIF1<0的值也為定值,故C,D正確,故選:ACD【新題速遞】一、單選題1.已知SKIPIF1<0為奇函數(shù),且在上是遞增的,若SKIPIF1<0,則SKIPIF1<0的解集是(

)A.或 B.或C.或 D.或【答案】B【解析】SKIPIF1<0是奇函數(shù),且在SKIPIF1<0內(nèi)是增函數(shù),SKIPIF1<0在SKIPIF1<0內(nèi)是增函數(shù),又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0的解集是SKIPIF1<0故選SKIPIF1<02.已知函數(shù)若存在SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題意知,SKIPIF1<0圖象的對稱軸方程為SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),根據(jù)二次函數(shù)的性質(zhì)可知,一定存在SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,使得SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),由題意知SKIPIF1<0,解得SKIPIF1<0,不符合題意.綜上所述,SKIPIF1<03.已知角SKIPIF1<0的終邊上一點(diǎn)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.以上答案都不對【答案】C【解析】由已知可得角SKIPIF1<0的終邊在第二或第四象限,當(dāng)角SKIPIF1<0是第二象限角時(shí),在其終邊上取點(diǎn)SKIPIF1<0,則SKIPIF1<0,由三角函數(shù)的定義得SKIPIF1<0,則SKIPIF1<0;當(dāng)角SKIPIF1<0是第四象限角時(shí),在其終邊上取點(diǎn)SKIPIF1<0,則SKIPIF1<0,由三角函數(shù)的定義得SKIPIF1<0,則SKIPIF1<0,綜上,SKIPIF1<04.已知函數(shù)SKIPIF1<0是R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】①SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上是增函數(shù);SKIPIF1<0在R上是增函數(shù);顯然SKIPIF1<0在SKIPIF1<0上不是增函數(shù);SKIPIF1<0的情況不存在;②SKIPIF1<0時(shí),SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論