版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
3.1回歸分析的基本思想及其初步應(yīng)用(一)高二數(shù)學(xué)選修2-32023/2/4.數(shù)學(xué)3——統(tǒng)計內(nèi)容畫散點圖了解最小二乘法的思想求回歸直線方程y=bx+a用回歸直線方程解決應(yīng)用問題2023/2/4.問題1:正方形的面積y與正方形的邊長x之間的函數(shù)關(guān)系是y=x2確定性關(guān)系問題2:某水田水稻產(chǎn)量y與施肥量x之間是否有一個確定性的關(guān)系?例如:在7塊并排、形狀大小相同的試驗田上進行施肥量對水稻產(chǎn)量影響的試驗,得到如下所示的一組數(shù)據(jù):施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455復(fù)習(xí)變量之間的兩種關(guān)系2023/2/4.1020304050500450400350300·······施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455xy施化肥量水稻產(chǎn)量2023/2/4.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系。1、定義:1):相關(guān)關(guān)系是一種不確定性關(guān)系;注對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的方法叫回歸分析。2):2023/2/4.
現(xiàn)實生活中存在著大量的相關(guān)關(guān)系。
如:人的身高與年齡;產(chǎn)品的成本與生產(chǎn)數(shù)量;商品的銷售額與廣告費;家庭的支出與收入。等等探索:水稻產(chǎn)量y與施肥量x之間大致有何規(guī)律?2023/2/4.1020304050500450400350300·······發(fā)現(xiàn):圖中各點,大致分布在某條直線附近。探索2:在這些點附近可畫直線不止一條,哪條直線最能代表x與y之間的關(guān)系呢?施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455xy散點圖施化肥量水稻產(chǎn)量2023/2/4.1020304050500450400350300·······xy施化肥量水稻產(chǎn)量2023/2/4.探究對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù)我們知道其回歸方程的截距和斜率的最小二乘估計公式分別為:稱為樣本點的中心。你能推導(dǎo)出這個公式嗎?2023/2/4.假設(shè)我們已經(jīng)得到兩個具有相關(guān)關(guān)系的變量的一組數(shù)據(jù)且回歸方程是:y=bx+a,^其中,a,b是待定參數(shù)。當(dāng)變量x取時它與實際收集到的之間的偏差是oxy2023/2/4.易知,截距和斜率分別是使取最小值時的值。由于2023/2/4.這正是我們所要推導(dǎo)的公式。在上式中,后兩項和無關(guān),而前兩項為非負數(shù),因此要使Q取得最小值,當(dāng)且僅當(dāng)前兩項的值均為0,即有2023/2/4.1、所求直線方程叫做回歸直線方程;相應(yīng)的直線叫做回歸直線。2、對兩個變量進行的線性分析叫做線性回歸分析。1、回歸直線方程2023/2/4.最小二乘法:稱為樣本點的中心。2023/2/4.2、求回歸直線方程的步驟:(3)代入公式(4)寫出直線方程為y=bx+a,即為所求的回歸直線方程。^2023/2/4.例1、觀察兩相關(guān)量得如下數(shù)據(jù):x-1-2-3-4-553421y-9-7-5-3-115379求兩變量間的回歸方程.解:列表:i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi91415125515121492023/2/4.所求回歸直線方程為2023/2/4.例2:已知10只狗的血球體積及血球的測量值如下:x45424648423558403950y6.536.309.527.506.995.909.499.206.558.72x(血球體積,mm),y(血球數(shù),百萬)(1)畫出上表的散點圖;(2)求出回歸直線并且畫出圖形;(3)回歸直線必經(jīng)過的一點是哪一點?2023/2/4.3、利用回歸直線方程對總體進行線性相關(guān)性的檢驗例3、煉鋼是一個氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時間的長短,必須掌握鋼水含碳量和冶煉時間的關(guān)系。如果已測得爐料熔化完畢時,鋼水的含碳量x與冶煉時間y(從爐料熔化完畢到出剛的時間)的一列數(shù)據(jù),如下表所示:x(0.01%)104180190177147134150191204121y(min)100200210185155135170205235125(1)y與x是否具有線性相關(guān)關(guān)系;(2)如果具有線性相關(guān)關(guān)系,求回歸直線方程;(3)預(yù)測當(dāng)鋼水含碳量為160個0.01%時,應(yīng)冶煉多少分鐘?2023/2/4.(1)列出下表,并計算i12345678910xi104180190177147134150191204121yi100200210185155135170205235125xiyi104003600039900327452278518090255003915547940151252023/2/4.所以回歸直線的方程為=1.267x-30.51(3)當(dāng)x=160時,1.267.160-30.51=172(2)設(shè)所求的回歸方程為2023/2/4.例4從某大學(xué)中隨機選出8名女大學(xué)生,其身高和體重數(shù)據(jù)如下表:編號12345678身高165165157170175165155170體重4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學(xué)生的體重。2023/2/4.分析:由于問題中要求根據(jù)身高預(yù)報體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點圖;2023/2/4.相關(guān)系數(shù)r>0正相關(guān);r<0負相關(guān).通常,r>0.75,認為兩個變量有很強的相關(guān)性.本例中,由上面公式r=0.798>0.75.2023/2/4.探究?身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,其原因是什么?2023/2/4.如何描述兩個變量之間線性相關(guān)關(guān)系的強弱?
在《數(shù)學(xué)3》中,我們學(xué)習(xí)了用相關(guān)系數(shù)r來衡量兩個變量之間線性相關(guān)關(guān)系的方法。相關(guān)系數(shù)r2023/2/4.相關(guān)關(guān)系的測度
(相關(guān)系數(shù)取值及其意義)-1.0+1.00-0.5+0.5完全負相關(guān)無線性相關(guān)完全正相關(guān)負相關(guān)程度增加r正相關(guān)程度增加2023/2/4.例1從某大學(xué)中隨機選取8名女大學(xué)生,其身高和體重數(shù)據(jù)如表1-1所示。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。2023/2/4.分析:由于問題中要求根據(jù)身高預(yù)報體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點圖;本例中,r=0.798>0.75.這表明體重與身高有很強的線性相關(guān)關(guān)系,從而也表明我們建立的回歸模型是有意義的。2023/2/4.探究:身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,你能解析一下原因嗎?答:身高為172cm的女大學(xué)生的體重不一定是60.316kg,但一般可以認為她的體重接近于60.316kg。即,用這個回歸方程不能給出每個身高為172cm的女大學(xué)生的體重的預(yù)測值,只能給出她們平均體重的值。2023/2/4.例1從某大學(xué)中隨機選取8名女大學(xué)生,其身高和體重數(shù)據(jù)如表1-1所示。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。3、從散點圖還看到,樣本點散布在某一條直線的附近,而不是在一條直線上,所以不能用一次函數(shù)y=bx+a描述它們關(guān)系。2023/2/4.我們可以用下面的線性回歸模型來表示:y=bx+a+e,(3)其中a和b為模型的未知參數(shù),e稱為隨機誤差。y=bx+a+e,E(e)=0,D(e)=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度云南省高校教師資格證之高等教育法規(guī)押題練習(xí)試題B卷含答案
- 贛南師范大學(xué)《民法》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《兒童舞》2023-2024學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《體育舞蹈》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)協(xié)和學(xué)院《國際貿(mào)易理論與實務(wù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《影視藝術(shù)前沿》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《實變函數(shù)論》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《環(huán)境影響評價》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《光電子材料與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 精益管理學(xué)習(xí)資料3
- 生產(chǎn)企業(yè)全工作流程結(jié)構(gòu)圖
- 純音聽閾測試(曹永茂)
- 化工企業(yè)冬季常見防凍、防凝方法
- IPD集成產(chǎn)品開發(fā)流程
- 生物實驗報告格式(十五篇)
- 基于plc的自動洗碗機系統(tǒng)控制電氣工程及其自動化
- 教學(xué)設(shè)計 《找規(guī)律》教學(xué)設(shè)計【省一等獎】
- GB/T 31861-2015工業(yè)窯爐用清潔燃料型煤
- 混凝土沉井工程檢驗批質(zhì)量驗收記錄
- 古琴教學(xué)講解課件
- 04第四章-火箭導(dǎo)彈的氣動布局
評論
0/150
提交評論