高中數(shù)學(xué)人教A版2第二章推理與證明 學(xué)業(yè)分層測(cè)評(píng)6_第1頁
高中數(shù)學(xué)人教A版2第二章推理與證明 學(xué)業(yè)分層測(cè)評(píng)6_第2頁
高中數(shù)學(xué)人教A版2第二章推理與證明 學(xué)業(yè)分層測(cè)評(píng)6_第3頁
高中數(shù)學(xué)人教A版2第二章推理與證明 學(xué)業(yè)分層測(cè)評(píng)6_第4頁
高中數(shù)學(xué)人教A版2第二章推理與證明 學(xué)業(yè)分層測(cè)評(píng)6_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)業(yè)分層測(cè)評(píng)(六)(建議用時(shí):45分鐘)[學(xué)業(yè)達(dá)標(biāo)]一、選擇題1.若a,b∈R,則eq\f(1,a3)>eq\f(1,b3)成立的一個(gè)充分不必要條件是()>0 >a<b<0 (a-b)<0【解析】由a<b<0?a3<b3<0?eq\f(1,a3)>eq\f(1,b3),但eq\f(1,a3)>eq\f(1,b3)不能推出a<b<0.∴a<b<0是eq\f(1,a3)>eq\f(1,b3)的一個(gè)充分不必要條件.【答案】C2.求證:eq\r(7)-1>eq\r(11)-eq\r(5).證明:要證eq\r(7)-1>eq\r(11)-eq\r(5),只需證eq\r(7)+eq\r(5)>eq\r(11)+1,即證7+2eq\r(7×5)+5>11+2eq\r(11)+1,即證eq\r(35)>eq\r(11),∵35>11,∴原不等式成立.以上證明應(yīng)用了()A.分析法B.綜合法C.分析法與綜合法配合使用D.間接證法【解析】該證明方法符合分析法的定義,故選A.【答案】A3.(2023·汕頭高二檢測(cè))要證:a2+b2-1-a2b2≤0,只要證明()【導(dǎo)學(xué)號(hào):37820233】-1-a2b2≤0+b2-1-eq\f(a4+b4,2)≤0\f((a+b)2,2)-1-a2b2≤0D.(a2-1)(b2-1)≥0【解析】要證a2+b2-1-a2b2≤0,只要證明(a2-1)+b2(1-a2)≤0,只要證明(a2-1)(1-b2)≤0,即證(a2-1)(b2-1)≥0.【答案】D4.在不等邊三角形中,a為最大邊,要想得到∠A為鈍角的結(jié)論,三邊a,b,c應(yīng)滿足什么條件()<b2+c2 =b2+c2>b2+c2 ≤b2+c2【解析】由余弦定理得cosA=eq\f(b2+c2-a2,2bc)<0,∴b2+c2-a2<0,即b2+c2<a2.【答案】C5.分析法又稱執(zhí)果索因法,若用分析法證明“設(shè)a>b>c,且a+b+c=0,求證:eq\r(b2-ac)<eq\r(3)a”,索的因應(yīng)是()-b>0 -c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】由題意知eq\r(b2-ac)<eq\r(3)a?b2-ac<3a2?b2+a(a+b)<3a2?b2+a2+ab<3a2?b2+ab<2a2?2a2-ab-b2>0?a2-ab+a2-b2>0?a(a-b)+(a+b)(a-b)>0?a(a-b)-c(a-b)>0?(a-b)(a-c)>0,故選C.【答案】C二、填空題6.(2023·煙臺(tái)高二檢測(cè))設(shè)A=eq\f(1,2a)+eq\f(1,2b),B=eq\f(2,a+b)(a>0,b>0),則A,B的大小關(guān)系為________.【解析】∵A-B=eq\f(a+b,2ab)-eq\f(2,a+b)=eq\f((a+b)2-4ab,2ab(a+b))=eq\f((a-b)2,2ab(a+b))≥0,∴A≥B.【答案】A≥B7.(2023·西安高二檢測(cè))如果aeq\r(a)>beq\r(b),則實(shí)數(shù)a,b應(yīng)滿足的條件是________.【解析】要使aeq\r(a)>beq\r(b)成立,只需(aeq\r(a))2>(beq\r(b))2,只需a3>b3>0,即a,b應(yīng)滿足a>b>0.【答案】a>b>08.如圖2-2-5,四棱柱ABCD-A1B1C1D1的側(cè)棱垂直于底面,滿足________時(shí),BD⊥A1C(寫上一個(gè)條件即可).圖2-2-5【解析】要證BD⊥A1C,只需證BD⊥平面AA1C.因?yàn)锳A1⊥BD,只要再添加條件AC⊥BD,即可證明BD⊥平面AA1C,從而有BD⊥A1C.【答案】AC⊥BD(或底面為菱形)三、解答題9.設(shè)a,b>0,且a≠b,求證:a3+b3>a2b+ab2.【證明】法一:分析法要證a3+b3>a2b+ab2成立.只需證(a+b)(a2-ab+b2)>ab(a+b)成立,又因a+b>0,只需證a2-ab+b2>ab成立,只需證a2-2ab+b2>0成立,即需證(a-b)2>0成立.而依題設(shè)a≠b,則(a-b)2>0顯然成立,由此命題得證.法二:綜合法a≠b?a-b≠0?(a-b)2>0?a2-2ab+b2>0?a2-ab+b2>ab.注意到a,b>0,a+b>0,由上式即得(a+b)(a2-ab+b2)>ab(a+b).∴a3+b3>a2b+ab2.10.(2023·深圳高二檢測(cè))已知三角形的三邊長(zhǎng)為a,b,c,其面積為S,求證:a2+b2+c2≥4eq\r(3)S.【證明】要證a2+b2+c2≥4eq\r(3)S,只要證a2+b2+(a2+b2-2abcosC)≥2eq\r(3)absinC,即證a2+b2≥2absin(C+30°),因?yàn)?absin(C+30°)≤2ab,只需證a2+b2≥2ab,顯然上式成立.所以a2+b2+c2≥4eq\r(3)S.[能力提升]1.已知a,b,c,d為正實(shí)數(shù),且eq\f(a,b)<eq\f(c,d),則()【導(dǎo)學(xué)號(hào):37820234】\f(a,b)<eq\f(a+c,b+d)<eq\f(c,d)\f(a+c,b+d)<eq\f(a,b)<eq\f(c,d)\f(a,b)<eq\f(c,d)<eq\f(a+c,b+d)D.以上均可能【解析】先取特殊值檢驗(yàn),∵eq\f(a,b)<eq\f(c,d),可取a=1,b=3,c=1,d=2,則eq\f(a+c,b+d)=eq\f(2,5),滿足eq\f(a,b)<eq\f(a+c,b+d)<eq\f(c,d).∴B,C不正確.要證eq\f(a,b)<eq\f(a+c,b+d),∵a,b,c,d為正實(shí)數(shù),∴只需證a(b+d)<b(a+c),即證ad<bc.只需證eq\f(a,b)<eq\f(c,d).而eq\f(a,b)<eq\f(c,d)成立,∴eq\f(a,b)<eq\f(a+c,b+d).同理可證eq\f(a+c,b+d)<eq\f(c,d).故A正確,D不正確.【答案】A2.(2023·黃岡高二檢測(cè))下列不等式不成立的是()+b2+c2≥ab+bc+ca\r(a)+eq\r(b)>eq\r(a+b)(a>0,b>0)\r(a)-eq\r(a-1)<eq\r(a-2)-eq\r(a-3)(a≥3)\r(2)+eq\r(10)>2eq\r(6)【解析】對(duì)于A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab+bc+ca;對(duì)于B,∵(eq\r(a)+eq\r(b))2=a+b+2eq\r(ab),(eq\r(a+b))2=a+b,∴eq\r(a)+eq\r(b)>eq\r(a+b);對(duì)于C,要證eq\r(a)-eq\r(a-1)<eq\r(a-2)-eq\r(a-3)(a≥3)成立,只需證明eq\r(a)+eq\r(a-3)<eq\r(a-2)+eq\r(a-1),兩邊平方得2a-3+2eq\r(a(a-3))<2a-3+2eq\r((a-2)(a-1)),即eq\r(a(a-3))<eq\r((a-2)(a-1)),兩邊平方得a2-3a<a2-3a+2,即0<2.因?yàn)?<2顯然成立,所以原不等式成立;對(duì)于D,(eq\r(2)+eq\r(10))2-(2eq\r(6))2=12+4eq\r(5)-24=4(eq\r(5)-3)<0,∴eq\r(2)+eq\r(10)<2eq\r(6),故D錯(cuò)誤.【答案】D3.使不等式eq\r(3)+2eq\r(2)>1+eq\r(p)成立的正整數(shù)p的最大值是________.【解析】由eq\r(3)+2eq\r(2)>1+eq\r(p),得eq\r(p)<eq\r(3)+2eq\r(2)-1,即p<(eq\r(3)+2eq\r(2)-1)2,所以p<12+4eq\r(6)-4eq\r(2)-2eq\r(3),由于12+4eq\r(6)-4eq\r(2)-2eq\r(3)≈,因此使不等式成立的正整數(shù)p的最大值是12.【答案】124.(2023·唐山高二檢測(cè))已知a,b,c是不全相等的正數(shù),且0<x<1,求證:logxeq\f(a+b,2)+logxeq\f(b+c,2)+logxeq\f(a+c,2)<logxa+logxb+logxc.【證明】要證明logxeq\f(a+b,2)+logxeq\f(b+c,2)+logxeq\f(a+c,2)<logxa+logxb+logxc,只需要證明logxeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)·\f(b+c,2)·\f(a+c,2)))<logx(abc),而已知0<x<1,故只需證明eq\f(a+b,2)·eq\f(b+c,2)·eq\f(a+c,2)>abc.∵a,b,c是不全相等的正數(shù),∴eq\f(a+b,2)≥eq\r(ab)>0,eq\f(b+c,2)≥eq\r(bc)>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論