四川省宜賓市翠屏區(qū)市級名校2023年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析及點(diǎn)睛_第1頁
四川省宜賓市翠屏區(qū)市級名校2023年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析及點(diǎn)睛_第2頁
四川省宜賓市翠屏區(qū)市級名校2023年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析及點(diǎn)睛_第3頁
四川省宜賓市翠屏區(qū)市級名校2023年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析及點(diǎn)睛_第4頁
四川省宜賓市翠屏區(qū)市級名校2023年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析及點(diǎn)睛_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,菱形ABCD中,E.F分別是AB、AC的中點(diǎn),若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.242.如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:33.計算結(jié)果是()A.0 B.1 C.﹣1 D.x4.已知一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形5.實(shí)數(shù)的相反數(shù)是()A.- B. C. D.6.若分式在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣78.如圖,在平行四邊形ABCD中,E是邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F,若∠B=52°,∠DAE=20°,則∠FED′的度數(shù)為()A.40° B.36° C.50° D.45°9.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC10.已知一個多邊形的每一個外角都相等,一個內(nèi)角與一個外角的度數(shù)之比是3:1,這個多邊形的邊數(shù)是A.8 B.9 C.10 D.1211.下列說法正確的是()A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點(diǎn)朝上是必然事件B.明天下雪的概率為,表示明天有半天都在下雪C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.了解一批充電寶的使用壽命,適合用普查的方式12.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結(jié)果是()A.a(chǎn)+b B.﹣a﹣c C.a(chǎn)+c D.a(chǎn)+2b﹣c二、填空題:(本大題共6個小題,每小題4分,共24分.)13.ABCD為矩形的四個頂點(diǎn),AB=16cm,AD=6cm,動點(diǎn)P、Q分別從點(diǎn)A、C同時出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止,點(diǎn)Q以2cm/s的速度向D移動,P、Q兩點(diǎn)從出發(fā)開始到__________秒時,點(diǎn)P和點(diǎn)Q的距離是10cm.14.如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)E是AD邊上的一個動點(diǎn)(不與A,D重合),EF∥AB交BC于點(diǎn)F,點(diǎn)G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.15.經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車先后經(jīng)過這個十字路口,則至少有一輛汽車向左轉(zhuǎn)的概率是___.16.如圖,點(diǎn)D是線段AB的中點(diǎn),點(diǎn)C是線段AD的中點(diǎn),若CD=1,則AB=________________.17.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出個球,則它是黑球的概率是_____.18.用一個圓心角為120°,半徑為4的扇形作一個圓錐的側(cè)面,這個圓錐的底面圓的半徑為____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點(diǎn)D的坐標(biāo).20.(6分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C均在格點(diǎn)上.(I)AC的長等于_____.(II)若AC邊與網(wǎng)格線的交點(diǎn)為P,請找出兩條過點(diǎn)P的直線來三等分△ABC的面積.請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).21.(6分)如圖,已知矩形OABC的頂點(diǎn)A、C分別在x軸的正半軸上與y軸的負(fù)半軸上,二次函數(shù)的圖像經(jīng)過點(diǎn)B和點(diǎn)C.(1)求點(diǎn)A的坐標(biāo);(2)結(jié)合函數(shù)的圖象,求當(dāng)y<0時,x的取值范圍.22.(8分)如圖所示,某小組同學(xué)為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)23.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設(shè)后房檐到地面的高度為米,前房檐到地面的高度米,求的值.24.(10分)如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).(1)求A、B兩點(diǎn)的坐標(biāo);(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當(dāng)△BDM為直角三角形時,求的值.25.(10分)如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個動點(diǎn).求此拋物線的解析式;求C、D兩點(diǎn)坐標(biāo)及△BCD的面積;若點(diǎn)P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點(diǎn)P的坐標(biāo).26.(12分)在平面直角坐標(biāo)系中,點(diǎn),,將直線平移與雙曲線在第一象限的圖象交于、兩點(diǎn).(1)如圖1,將繞逆時針旋轉(zhuǎn)得與對應(yīng),與對應(yīng)),在圖1中畫出旋轉(zhuǎn)后的圖形并直接寫出、坐標(biāo);(2)若,①如圖2,當(dāng)時,求的值;②如圖3,作軸于點(diǎn),軸于點(diǎn),直線與雙曲線有唯一公共點(diǎn)時,的值為.27.(12分)某商場,為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機(jī)會.已知在搖獎機(jī)內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機(jī)內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.球兩紅一紅一白兩白禮金券(元)182418(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.(2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實(shí)惠.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據(jù)菱形的周長公式列式計算即可得解.【詳解】、分別是、的中點(diǎn),是的中位線,,菱形的周長.故選:.【點(diǎn)睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關(guān)鍵.2、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點(diǎn)上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點(diǎn)睛】本題考查的是圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.3、C【解析】試題解析:.故選C.考點(diǎn):分式的加減法.4、D【解析】

根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設(shè)多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點(diǎn)睛】此題考查多邊形內(nèi)角與外角,解題關(guān)鍵在于掌握其定理.5、A【解析】

根據(jù)相反數(shù)的定義即可判斷.【詳解】實(shí)數(shù)的相反數(shù)是-故選A.【點(diǎn)睛】此題主要考查相反數(shù)的定義,解題的關(guān)鍵是熟知相反數(shù)的定義即可求解.6、D【解析】

根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點(diǎn)睛】本題考查分式有意義的條件,解題的關(guān)鍵是熟練運(yùn)用分式有意義的條件,本題屬于基礎(chǔ)題型.7、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.8、B【解析】

由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.9、C【解析】

在復(fù)雜的圖形中具有相等關(guān)系的兩角首先要判斷它們是否是同位角或內(nèi)錯角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項(xiàng)錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項(xiàng)錯誤;C、∠A=∠ABE,根據(jù)內(nèi)錯角相等,兩直線平行,可以得出EB∥AC,故本選項(xiàng)正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題考查了平行線的判定,正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.10、A【解析】試題分析:設(shè)這個多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補(bǔ)可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設(shè)這個多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數(shù):360°÷45°=8,故選A.考點(diǎn):多邊形內(nèi)角與外角.11、C【解析】

根據(jù)必然事件、不可能事件、隨機(jī)事件的概念、方差和普查的概念判斷即可.【詳解】A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點(diǎn)朝上是隨機(jī)事件,錯誤;B.“明天下雪的概率為”,表示明天有可能下雪,錯誤;C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,正確;D.了解一批充電寶的使用壽命,適合用抽查的方式,錯誤;故選:C【點(diǎn)睛】考查方差,全面調(diào)查與抽樣調(diào)查,隨機(jī)事件,概率的意義,比較基礎(chǔ),難度不大.12、C【解析】

首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】

作PH⊥CD,垂足為H,設(shè)運(yùn)動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設(shè)P,Q兩點(diǎn)從出發(fā)經(jīng)過t秒時,點(diǎn)P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點(diǎn)從出發(fā)經(jīng)過1.6或4.8秒時,點(diǎn)P,Q間的距離是10cm.故答案為或.【點(diǎn)睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.14、1或【解析】

由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當(dāng)△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當(dāng)△EFG為等腰三角形時,當(dāng)EF=EG時,EG=,如圖1,過點(diǎn)D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點(diǎn)G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點(diǎn)D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當(dāng)EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點(diǎn)C和點(diǎn)G重合,點(diǎn)F和點(diǎn)B重合,不符合題意,故答案為1或.【點(diǎn)睛】本題考查了菱形的性質(zhì),平行四邊形的性質(zhì),等腰三角形的性質(zhì)以及勾股定理,熟練掌握各性質(zhì)是解題的關(guān)鍵.15、.【解析】

根據(jù)題意,畫出樹狀圖,然后根據(jù)樹狀圖和概率公式求概率即可.【詳解】解:畫樹狀圖得:共有9種等可能的結(jié)果,至少有一輛汽車向左轉(zhuǎn)的有5種情況,至少有一輛汽車向左轉(zhuǎn)的概率是:.故答案為:.【點(diǎn)睛】此題考查的是求概率問題,掌握樹狀圖的畫法和概率公式是解決此題的關(guān)鍵.16、4【解析】∵點(diǎn)C是線段AD的中點(diǎn),若CD=1,∴AD=1×2=2,∵點(diǎn)D是線段AB的中點(diǎn),∴AB=2×2=4,故答案為4.17、【解析】

一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機(jī)取出1個球,則它是黑球的概率是:故答案為:.【點(diǎn)睛】本題主要考查概率的求法與運(yùn)用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.18、【解析】試題分析:,解得r=.考點(diǎn):弧長的計算.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點(diǎn)D的坐標(biāo)為(,).【解析】

(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時,AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時,點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).20、作a∥b∥c∥d,可得交點(diǎn)P與P′【解析】

(1)根據(jù)勾股定理計算即可;(2)利用平行線等分線段定理即可解決問題.【詳解】(I)AC==,故答案為:;(II)如圖直線l1,直線l2即為所求;

理由:∵a∥b∥c∥d,且a與b,b與c,c與d之間的距離相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=S△ABC.故答案為作a∥b∥c∥d,可得交點(diǎn)P與P′.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計,勾股定理,平行線等分線段定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.21、(1);(2)【解析】

(1)當(dāng)時,求出點(diǎn)C的坐標(biāo),根據(jù)四邊形為矩形,得出點(diǎn)B的坐標(biāo),進(jìn)而求出點(diǎn)A即可;(2)先求出拋物線圖象與x軸的兩個交點(diǎn),結(jié)合圖象即可得出.【詳解】解:(1)當(dāng)時,函數(shù)的值為-2,∴點(diǎn)的坐標(biāo)為∵四邊形為矩形,解方程,得.∴點(diǎn)的坐標(biāo)為.∴點(diǎn)的坐標(biāo)為.(2)解方程,得.由圖象可知,當(dāng)時,的取值范圍是.【點(diǎn)睛】本題考查了二次函數(shù)與幾何問題,以及二次函數(shù)與不等式問題,解題的關(guān)鍵是靈活運(yùn)用幾何知識,并熟悉二次函數(shù)的圖象與性質(zhì).22、30.3米.【解析】試題分析:過點(diǎn)D作DE⊥AB于點(diǎn)E,在Rt△ADE中,求出AE的長,在Rt△DEB中,求出BE的長即可得.試題解析:過點(diǎn)D作DE⊥AB于點(diǎn)E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE×tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.23、【解析】

過A作一條水平線,分別過B,C兩點(diǎn)作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點(diǎn)作這條水平線的垂線,垂足分別為D,E,

∵房子后坡度AB與前坡度AC相等,

∴∠BAD=∠CAE,

∵∠BAC=120°,

∴∠BAD=∠CAE=30°,

在直角△ABD中,AB=4米,

∴BD=2米,

在直角△ACE中,AC=6米,

∴CE=3米,

∴a-b=1米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握坡度坡角的概念.24、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】

(1)在中令y=0,即可得到A、B兩點(diǎn)的坐標(biāo).(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設(shè)拋物線C1的表達(dá)式為(),把C(0,)代入可得,.∴C1的表達(dá)式為:,即.設(shè)P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當(dāng)時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當(dāng)∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當(dāng)∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.25、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設(shè)拋物線頂點(diǎn)式解析式y(tǒng)=a(x-1)2+4,然后把點(diǎn)B的坐標(biāo)代入求出a的值,即可得解;

(2)令y=0,解方程得出點(diǎn)C,D坐標(biāo),再用三角形面積公式即可得出結(jié)論;

(3)先根據(jù)面積關(guān)系求出點(diǎn)P的坐標(biāo),求出點(diǎn)P的縱坐標(biāo),代入拋物線解析式即可求出點(diǎn)P的坐標(biāo).【詳解】解:(1)、∵拋物線的頂點(diǎn)為A(1,4),∴設(shè)拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點(diǎn)B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論