江蘇省揚州市翠崗2023年中考考前最后一卷數(shù)學試卷含解析及點睛_第1頁
江蘇省揚州市翠崗2023年中考考前最后一卷數(shù)學試卷含解析及點睛_第2頁
江蘇省揚州市翠崗2023年中考考前最后一卷數(shù)學試卷含解析及點睛_第3頁
江蘇省揚州市翠崗2023年中考考前最后一卷數(shù)學試卷含解析及點睛_第4頁
江蘇省揚州市翠崗2023年中考考前最后一卷數(shù)學試卷含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤2.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.3.如圖,兩個轉(zhuǎn)盤A,B都被分成了3個全等的扇形,在每一扇形內(nèi)均標有不同的自然數(shù),固定指針,同時轉(zhuǎn)動轉(zhuǎn)盤A,B,兩個轉(zhuǎn)盤停止后觀察兩個指針所指扇形內(nèi)的數(shù)字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉(zhuǎn)動一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉(zhuǎn)盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.354.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.5.若2<<3,則a的值可以是()A.﹣7 B. C. D.126.下面調(diào)查方式中,合適的是()A.調(diào)查你所在班級同學的體重,采用抽樣調(diào)查方式B.調(diào)查烏金塘水庫的水質(zhì)情況,采用抽樣調(diào)査的方式C.調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學生的業(yè)余愛好,采用普查的方式7.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.28.|﹣3|=()A. B.﹣ C.3 D.﹣39.今年,我省啟動了“關(guān)愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進行了統(tǒng)計,得到每個年級的留守兒童人數(shù)分別為10,15,10,17,18,1.對于這組數(shù)據(jù),下列說法錯誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是10.下列算式中,結(jié)果等于a5的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.a(chǎn)5÷a D.(a2)3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.12.如圖,在△ABC中,DE∥BC,若AD=1,DB=2,則的值為_________.13.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.14.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.15.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則16.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.三、解答題(共8題,共72分)17.(8分)小明對,,,四個中小型超市的女工人數(shù)進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數(shù)占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現(xiàn)在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.18.(8分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.19.(8分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.20.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結(jié)FD、BE、BF,設OP=t.(1)直接寫出點E的坐標(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.21.(8分)如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,AB=BD,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(n,).(1)求m、n的值和反比例函數(shù)的表達式.(2)將矩形OABC的一角折疊,使點O與點D重合,折痕分別與x軸,y軸正半軸交于點F,G,求線段FG的長.22.(10分)如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點A、B,與x軸交于點C.(1)若A(﹣3,m)、B(1,n).直接寫出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直線AB的解析式.23.(12分)如圖,現(xiàn)有一塊鋼板余料,它是矩形缺了一角,.王師傅準備從這塊余料中裁出一個矩形(為線段上一動點).設,矩形的面積為.(1)求與之間的函數(shù)關(guān)系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?24.在平面直角坐標系中,某個函數(shù)圖象上任意兩點的坐標分別為(﹣t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<﹣t的部分沿直線y=y(tǒng)1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y(tǒng)2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.例如:如圖,當t=1時,原函數(shù)y=x,圖象G所對應的函數(shù)關(guān)系式為y=.(1)當t=時,原函數(shù)為y=x+1,圖象G與坐標軸的交點坐標是.(2)當t=時,原函數(shù)為y=x2﹣2x①圖象G所對應的函數(shù)值y隨x的增大而減小時,x的取值范圍是.②圖象G所對應的函數(shù)是否有最大值,如果有,請求出最大值;如果沒有,請說明理由.(3)對應函數(shù)y=x2﹣2nx+n2﹣3(n為常數(shù)).①n=﹣1時,若圖象G與直線y=2恰好有兩個交點,求t的取值范圍.②當t=2時,若圖象G在n2﹣2≤x≤n2﹣1上的函數(shù)值y隨x的增大而減小,直接寫出n的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)實數(shù)的運算法則即可一一判斷求解.【詳解】①有理數(shù)的0次冪,當a=0時,a0=0;②為同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,正確;③中2–2=,原式錯誤;④為有理數(shù)的混合運算,正確;⑤為合并同類項,正確.故選D.2、C【解析】

由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【點睛】本題考查了拋物線與x軸的交點以及二次函數(shù)的圖象與位置變化,逐一分析四個選項中的圖形是解題的關(guān)鍵.3、A【解析】

根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率即可.【詳解】由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.4、B【解析】

設大馬有匹,小馬有匹,根據(jù)題意可得等量關(guān)系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.5、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.6、B【解析】

由普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.【詳解】A、調(diào)查你所在班級同學的體重,采用普查,故A不符合題意;B、調(diào)查烏金塘水庫的水質(zhì)情況,無法普查,采用抽樣調(diào)査的方式,故B符合題意;C、調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,調(diào)查范圍廣適合抽樣調(diào)查,故C不符合題意;D、要了解全市初中學生的業(yè)余愛好,調(diào)查范圍廣適合抽樣調(diào)查,故D不符合題意;故選B.【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.7、C【解析】

由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.8、C【解析】

根據(jù)絕對值的定義解答即可.【詳解】|-3|=3故選:C【點睛】本題考查的是絕對值,理解絕對值的定義是關(guān)鍵.9、C【解析】

解:中位數(shù)應該是15和17的平均數(shù)16,故C選項錯誤,其他選擇正確.故選C.【點睛】本題考查求中位數(shù),眾數(shù),方差,理解相關(guān)概念是本題的解題關(guān)鍵.10、B【解析】試題解析:A、a2與a3不能合并,所以A選項錯誤;B、原式=a5,所以B選項正確;C、原式=a4,所以C選項錯誤;D、原式=a6,所以D選項錯誤.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關(guān)鍵.12、【解析】DE∥BC即13、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.14、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據(jù)此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應頂點的連線平行或共線.15、6【解析】

首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點睛】本題考查了勾股定理和三角形中位線定理.16、【解析】

如圖,作OH⊥CD于H,連結(jié)OC,根據(jù)垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據(jù)含30°的直角三角形的性質(zhì)計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結(jié)OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質(zhì),解此題的關(guān)鍵在于作輔助線得到直角三角形,再合理利用各知識點進行計算即可三、解答題(共8題,共72分)17、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】

(1)用A超市有女工人數(shù)除以女工人數(shù)占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數(shù),進一步得到四個中小型超市的女工人數(shù)比,從而求得B超市有女工多少人;

(2)先求出C超市有女工人數(shù),進一步得到四個中小型超市共有女工人數(shù),再根據(jù)概率的定義即可求解;

(3)先求出D超市有女工人數(shù)、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數(shù)、共有員工多少人,再根據(jù)概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數(shù)的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統(tǒng)計表與扇形統(tǒng)計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)證明參見解析;(2)半徑長為,=.【解析】

(1)已知點D在圓上,要連半徑證垂直,連結(jié),則,所以,∵,∴.∴,∴∥.由得出,于是得出結(jié)論;(2)由得到,設,則.,,,由,解得值,進而求出圓的半徑及AE長.【詳解】解:(1)已知點D在圓上,要連半徑證垂直,如圖2所示,連結(jié),∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設,則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【點睛】1.圓的切線的判定;2.銳角三角函數(shù)的應用.19、(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標即可;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標即可.【詳解】(1)如圖所示,畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是(2,-2);(2)如圖所示,以B為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是(1,0),故答案為(1)(2,-2);(2)(1,0)【點睛】此題考查了作圖-位似變換與平移變換,熟練掌握位似變換與平移變換的性質(zhì)是解本題的關(guān)鍵.20、(1)、(t+6,t);(2)、當t=2時,S有最小值是16;(3)、理由見解析.【解析】

(1)如圖所示,過點E作EG⊥x軸于點G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點E的坐標為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當t=2時,S有最小值是16;(3)①假設∠FBD為直角,則點F在直線BC上,∵PF=OP<AB,∴點F不可能在BC上,即∠FBD不可能為直角;②假設∠FDB為直角,則點D在EF上,∵點D在矩形的對角線PE上,∴點D不可能在EF上,即∠FDB不可能為直角;③假設∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設不成立,即△BDF不可能是等腰直角三角形.21、(1)y=;(2).【解析】

(1)根據(jù)題意得出,解方程即可求得m、n的值,然后根據(jù)待定系數(shù)法即可求得反比例函數(shù)的解析式;(2)設OG=x,則GD=OG=x,CG=2﹣x,根據(jù)勾股定理得出關(guān)于x的方程,解方程即可求得DG的長,過F點作FH⊥CB于H,易證得△GCD∽△DHF,根據(jù)相似三角形的性質(zhì)求得FG,最后根據(jù)勾股定理即可求得.【詳解】(1)∵D(m,2),E(n,),∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函數(shù)的表達式為y=;(2)設OG=x,則GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=,過F點作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴,即,∴FD=,∴FG=.【點睛】本題考查了反比例函數(shù)與幾何綜合題,涉及了待定系數(shù)法、勾股定理、相似三角形的判定與性質(zhì)等,熟練掌握待定系數(shù)法、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.22、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】

(1)不等式的解即為函數(shù)y=﹣2x+b的圖象在函數(shù)y=上方的x的取值范圍.可由圖象直接得到.(2)用b表示出OC和OF的長度,求出CF的長,進而求出sin∠OCB.(3)求直線AB的解析式關(guān)鍵是求出b的值.【詳解】解:(1)如圖:由圖象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)設直線AB和y軸的交點為F.當y=0時,x=,即OC=﹣;當x=0時,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.(3)過A作AD⊥x軸,過B作BE⊥x軸,則AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.【點睛】這道題主要考查反比例函數(shù)的圖象與一次函數(shù)的交點問題,借助圖象分析之間的關(guān)系,體現(xiàn)數(shù)形結(jié)合思想的重要性.23、(1);(1)時,取最大值,為.【解析】

(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據(jù),即可得z=,利用矩形的面積公式即可得出解析式;

(1)將(1)中所得解析式配方成頂點式,利用二次函數(shù)的性質(zhì)解答可得.【詳解】解:(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,

∵AF=x,

∴CH=x-4,

設AQ=z,PH=BQ=6-z,

∵PH∥EG,

∴,即,

化簡得z=,

∴y=?x=-x1+x(4≤x≤10);

(1)y=-x1+x=-(x-)1+,

當x=dm時,y取最大值,最大值是dm1.【點睛】本題考查了二次函數(shù)的應用,解題的關(guān)鍵是根據(jù)相似三角形的性質(zhì)得出矩形另一邊AQ的長及二次函數(shù)的性質(zhì).24、(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對應的函數(shù)有最大值為;(3)①;②n≤或n≥.【解析】

(1)根據(jù)題意分別求出翻轉(zhuǎn)之后部分的表達式及自變量的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論