江蘇省南京外國語校2023學年中考聯考數學試題含解析及點睛_第1頁
江蘇省南京外國語校2023學年中考聯考數學試題含解析及點睛_第2頁
江蘇省南京外國語校2023學年中考聯考數學試題含解析及點睛_第3頁
江蘇省南京外國語校2023學年中考聯考數學試題含解析及點睛_第4頁
江蘇省南京外國語校2023學年中考聯考數學試題含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列二次根式中,最簡二次根式的是()A. B. C. D.2.如圖,不等式組的解集在數軸上表示正確的是()A. B.C. D.3.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.94.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.65.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數式a3﹣2a+1的值時需用到的數學方法是()A.待定系數法B.配方C.降次D.消元6.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.7.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a C. D.8.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-39.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°10.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數為()A.120° B.110° C.100° D.80°二、填空題(本大題共6個小題,每小題3分,共18分)11.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.12.因式分解:4x2y﹣9y3=_____.13.填在下列各圖形中的三個數之間都有相同的規(guī)律,根據此規(guī)律,a的值是____.14.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.15.如果一個正多邊形每一個內角都等于144°,那么這個正多邊形的邊數是____.16.如圖,在平面直角坐標系中,以坐標原點O為位似中心在y軸的左側將△OAB縮小得到△OA′B′,若△OAB與△OA′B′的相似比為2:1,則點B(3,﹣2)的對應點B′的坐標為_____.三、解答題(共8題,共72分)17.(8分)某校初三進行了第三次模擬考試,該校領導為了了解學生的數學考試情況,抽樣調查了部分學生的數學成績,并將抽樣的數據進行了如下整理.(1)填空_______,_______,數學成績的中位數所在的等級_________.(2)如果該校有1200名學生參加了本次模擬測,估計等級的人數;(3)已知抽樣調查學生的數學成績平均分為102分,求A級學生的數學成績的平均分數.①如下分數段整理樣本等級等級分數段各組總分人數48435741712②根據上表繪制扇形統(tǒng)計圖18.(8分)x取哪些整數值時,不等式5x+2>3(x-1)與x≤2-x都成立?19.(8分)如圖所示,內接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.20.(8分)某經銷商經銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?21.(8分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數表達式為;(2)記△OMP的面積為S,求S與t的函數關系式;并求t為何值時,S有最大值,并求出最大值.22.(10分)如圖,已知BD是△ABC的角平分線,點E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.23.(12分)為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數;已知在燈塔P的周圍25海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.24.在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系式.求機場大巴與貨車相遇地到機場C的路程.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數為小數,不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數,含能開得盡方的因數或因式,故D選項錯誤;故選C.考點:最簡二次根式.2、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數軸上表示解集,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.3、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數占總情況數的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數有6種,所以概率為12故選D.考點:列表法與樹狀法.4、C【解析】

利用平行四邊形的性質得出△ADF∽△EBF,得出=,再根據勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,FD=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質,解題的關鍵是熟練的掌握勾股定理與相似三角形的判定與性質.5、C【解析】

根據一元二次方程的解的定義即可求出答案.【詳解】由題意可知:a2-a-1=0,

∴a2-a=1,

或a2-1=a

∴a3-2a+1

=a3-a-a+1

=a(a2-1)-(a-1)

=a2-a+1

=1+1

=2

故選:C.【點睛】本題考查了一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義.6、C【解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據等邊三角形的性質求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關鍵.7、A【解析】

取CB的中點G,連接MG,根據等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據全等三角形對應邊相等可得HN=MG,然后根據垂線段最短可得MG⊥CH時最短,再根據∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.8、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.9、B【解析】

根據時針與分針相距的份數乘以每份的度數,可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【點睛】本題考查了鐘面角,確定時針與分針相距的份數是解題關鍵.10、D【解析】

先利用鄰補角得到∠DCE=80°,然后根據平行線的性質求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點睛】本題考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.12、y(2x+3y)(2x-3y)【解析】

直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.13、1.【解析】尋找規(guī)律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數字減上面數字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.14、50【解析】

根據BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據半徑相等所對應的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【點睛】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關鍵15、1【解析】

設正多邊形的邊數為n,然后根據多邊形的內角和公式列方程求解即可.【詳解】解:設正多邊形的邊數為n,由題意得,=144°,解得n=1.故答案為1.【點睛】本題考查了多邊形的內角與外角,熟記公式并準確列出方程是解題的關鍵.16、(-,1)【解析】

根據如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k進行解答.【詳解】解:∵以原點O為位似中心,相似比為:2:1,將△OAB縮小為△OA′B′,點B(3,?2)則點B(3,?2)的對應點B′的坐標為:(-,1),故答案為(-,1).【點睛】本題考查了位似變換:位似圖形與坐標,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.三、解答題(共8題,共72分)17、(1)6;8;B;(2)120人;(3)113分.【解析】

(1)根據表格中的數據和扇形統(tǒng)計圖中的數據可以求得本次抽查的人數,從而可以得到m、n的值,從而可以得到數學成績的中位數所在的等級;

(2)根據表格中的數據可以求得D等級的人數;

(3)根據表格中的數據,可以計算出A等級學生的數學成績的平均分數.【詳解】(1)本次抽查的學生有:(人),

,

數學成績的中位數所在的等級B,

故答案為:6,11,B;

(2)120(人),

答:D等級的約有120人;

(3)由表可得,

A等級學生的數學成績的平均分數:(分),

即A等級學生的數學成績的平均分是113分.【點睛】本題考查了扇形統(tǒng)計圖、中位數、加權平均數,解答本題的關鍵是明確題意,利用數形結合的思想解答.18、-2,-1,0,1【解析】

解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數,則x?。?,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數解(包括正整數,0,負整數).19、(1)見解析;(2)成立;(3)【解析】

(1)根據圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據三角形內角和定理求出即可;(2)根據圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據圓周角定理得:,∴,∴由三角形內角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設,,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關鍵,綜合性比較強,難度偏大.20、(1)二月份冰箱每臺售價為4000元;(2)有五種購貨方案;(3)a的值為1.【解析】

(1)設二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據數量=總價÷單價結合賣出相同數量的冰箱一月份的銷售額為9萬元而二月份的銷售額只有3萬元,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)根據總價=單價×數量結合預計用不多于7.6萬元的資金購進這兩種家電共20臺,即可得出關于y的一元一次不等式,解之即可得出y的取值范圍,結合y≤2及y為正整數,即可得出各進貨方案;(3)設總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據總利潤=單臺利潤×購進數量,即可得出w關于m的函數關系式,由w為定值即可求出a的值.【詳解】(1)設二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據題意,得:=,解得:x=4000,經檢驗,x=4000是原方程的根.答:二月份冰箱每臺售價為4000元.(2)根據題意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y為整數,∴y=3,9,10,11,2.∴洗衣機的臺數為:2,11,10,9,3.∴有五種購貨方案.(3)設總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據題意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利潤相同,∴1﹣a=0,∴a=1.答:a的值為1.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式;(3)利用總利潤=單臺利潤×購進數量,找出w關于m的函數關系式.21、(1),;(2),1,1.【解析】

(1)根據四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數的性質求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數與幾何動態(tài)問題,解題的關鍵是根據題意表達出點的坐標,利用幾何知識列出函數關系式.22、證明見解析.【解析】試題分析:先利用平行四邊形性質證明DE=CF,再證明EB=ED,即可解決問題.試題解析:∵ED∥BC,EF∥AC,∴四邊形EFCD是平行四邊形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論