




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結(jié)AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°2.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC3.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣14.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.5.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.6.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O47.為了解當?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結(jié)果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數(shù)據(jù)的中位數(shù)是﹣1,則下列結(jié)論錯誤的是()A.方差是8 B.極差是9 C.眾數(shù)是﹣1 D.平均數(shù)是﹣18.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°9.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.10.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.11.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.1612.關(guān)于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為____cm.14.如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標(6,0),B的坐標(0,8),點C的坐標(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發(fā),當其中一點到達終點后,另一點也隨之停止運動,設(shè)動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當t=3時,S的值是_____.15.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.16.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結(jié)果保留π)17.如圖,在中,,點D、E分別在邊、上,且,如果,,那么________.18.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設(shè)運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.20.(6分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖①所示,S與x的函數(shù)關(guān)系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關(guān)于x的函數(shù)關(guān)系式.(3)直接寫出兩車出發(fā)多長時間相距200km?21.(6分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內(nèi)可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結(jié)果保留根號)22.(8分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.23.(8分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)24.(10分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.25.(10分)已知關(guān)于的一元二次方程(為實數(shù)且).求證:此方程總有兩個實數(shù)根;如果此方程的兩個實數(shù)根都是整數(shù),求正整數(shù)的值.26.(12分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設(shè)點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.27.(12分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質(zhì)和平行四邊形的性質(zhì)可得解.【詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質(zhì)可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質(zhì)、圓的基本性質(zhì).2、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.3、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.4、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖5、C【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關(guān)鍵.6、A【解析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.7、A【解析】根據(jù)題意可知x=-1,
平均數(shù)=(-6-1-1-1+2+1)÷6=-1,
∵數(shù)據(jù)-1出現(xiàn)兩次最多,
∴眾數(shù)為-1,
極差=1-(-6)=2,
方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故選A.8、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.9、C【解析】
根據(jù)中心對稱圖形,軸對稱圖形的定義進行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對稱性進行判斷.10、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.11、D【解析】
由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質(zhì),即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質(zhì),比較簡單,注意數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.12、B【解析】
分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構(gòu)成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經(jīng)過的路線為圓心角為60°且半徑為10cm的圓弧.∴的長=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經(jīng)過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.14、10,1,1【解析】
作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質(zhì)得出BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標與圖形性質(zhì)、線段垂直平分線的性質(zhì)、三角形面積公式等知識;熟練掌握勾股定理是解題的關(guān)鍵.15、18°【解析】試題分析:根據(jù)圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖16、18π【解析】
根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關(guān)鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.17、【解析】
根據(jù),,得出,利用相似三角形的性質(zhì)解答即可.【詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:【點睛】本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)求解.18、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)當t=時,PQ∥BC;(2)﹣(t﹣)2+,當t=時,y有最大值為;(3)存在,當t=時,四邊形PQP′C為菱形【解析】
(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當t=時,PQ∥BC.(2)過點P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當t=時,四邊形PQP′C為菱形.【點睛】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造相似三角形解決問題,學會理由參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.20、(1)a=6,b=;(2);(3)或5h【解析】
(1)根據(jù)S與x之間的函數(shù)關(guān)系式可以得到當位于C點時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據(jù)函數(shù)的圖像可以得到A、B、C、D的點的坐標,利用待定系數(shù)法求得函數(shù)的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當相遇前令s=200即可求得x的值.【詳解】解:(1)由s與x之間的函數(shù)的圖像可知:當位于C點時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數(shù)的圖象上可以得到A、B、C、D點的坐標分別為:(0,600)、(,0)、(6,360)、(10,600),∴設(shè)線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設(shè)線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設(shè)直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【點睛】本題考查了一次函數(shù)的綜合知識,特別是本題中涉及到了分段函數(shù)的知識,解題時主要自變量的取值范圍.21、DE的長度為6+1.【解析】
根據(jù)相似三角形的判定與性質(zhì)解答即可.【詳解】解:過E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設(shè)EF為x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的長度為6+1.【點睛】本題考查相似三角形性質(zhì)的應(yīng)用,解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.22、(1)見解析;(2)1【解析】
(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質(zhì)得OD⊥DF,則根據(jù)等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;
(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以O(shè)H=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點,∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理.23、熱氣球離地面的高度約為1米.【解析】
作AD⊥BC交CB的延長線于D,設(shè)AD為x,表示出DB和DC,根據(jù)正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長線于D,設(shè)AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點睛】考查的是解直角三角形的應(yīng)用,理解仰角和俯角的概念、掌握銳角三角函數(shù)的概念是解題的關(guān)鍵,解答時,注意正確作出輔助線構(gòu)造直角三角形.24、(1)-1;(2).【解析】
(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【點睛】本題考查了學生的運算能力,解題的關(guān)鍵是熟練運用運算法則,本題屬于基礎(chǔ)題型.25、(1)證明見解析;(2)或.【解析】
(1)求出△的值,再判斷出其符號即可;(2)先求出x的值,再由方程的兩個實數(shù)根都是整數(shù),且m是正整數(shù)求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個實數(shù)根.(2)∵,∴,.∵方程的兩個實數(shù)根都是整數(shù),且是正整數(shù),∴或.∴或.【點睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關(guān)系是解答此題的關(guān)鍵.26、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點A、B坐標利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3909-2020病媒生物防制技術(shù)規(guī)范居民區(qū)
- DB32/T 3858-2020白葉黑茶加工技術(shù)規(guī)程
- DB31/T 914.2-2021小型游樂設(shè)施安全第2部分:安裝要求
- DB31/T 891-2015預(yù)拌現(xiàn)澆泡沫混凝土應(yīng)用技術(shù)規(guī)程
- DB31/T 637-2012高等學校學生公寓管理服務(wù)規(guī)范
- DB31/T 540-2022重點單位消防安全管理要求
- DB31/T 300-2018燃氣燃燒器具安全和環(huán)保技術(shù)要求
- DB31/T 1303-2021誠信計量示范社(街)區(qū)建設(shè)評價導則
- DB31/T 1230-2020呼吸道傳染病流行期間社會福利機構(gòu)安全操作指南
- DB31/T 1146.3-2019智能電網(wǎng)儲能系統(tǒng)性能測試技術(shù)規(guī)范第3部分:頻率調(diào)節(jié)應(yīng)用
- 2025年廣東省深圳市羅湖區(qū)中考英語二模試卷
- 四川省成都市2025屆高三第三次診斷性檢測數(shù)學試卷(含答案)
- 信息技術(shù)與社會發(fā)展試題及答案
- 供電公司安全日活動課件
- 兒童輸血指南課件
- 2025-2030中國充電機器人行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報告
- 胸腺瘤切除術(shù)后的護理
- dl∕t 5491-2014 電力工程交流不間斷電源系統(tǒng)設(shè)計技術(shù)規(guī)程
- 2025年共青團入團考試測試題庫及答案
- 《讀讀童謠和兒歌》(一-四測)閱讀練習題
- 公安指揮中心業(yè)務(wù)培訓
評論
0/150
提交評論