計(jì)算方法解線性方程組的直接法_第1頁
計(jì)算方法解線性方程組的直接法_第2頁
計(jì)算方法解線性方程組的直接法_第3頁
計(jì)算方法解線性方程組的直接法_第4頁
計(jì)算方法解線性方程組的直接法_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

準(zhǔn)確,可靠,理論上得到的解是精確的第四章解線性代數(shù)方程組的直接法背景:在自然科學(xué)和工程技術(shù)中,很多問題往往最終都?xì)w結(jié)為解線性代數(shù)方程組,例如:結(jié)構(gòu)分析、網(wǎng)絡(luò)分析、數(shù)據(jù)分析、最優(yōu)化和微分方程組數(shù)值解等,常遇到線性方程組的求解問題.

記為矩陣形式:解線性方程組的數(shù)值方法大體上可分為兩類:直接法和迭代法①

直接法是指在沒有舍入誤差的情況下經(jīng)過有限次運(yùn)算可求得精確解;②迭代法是從一個(gè)初始向量出發(fā)按照一定的計(jì)算格式逐次逼近精確解.在線性代數(shù)課程中,給出了求解線性方程組的一種直接法---克萊姆(Cramer,瑞典數(shù)學(xué)家)算法.例如一、直接法速度快,但有誤差或者:根據(jù)Cramer法則:當(dāng)且僅當(dāng)時(shí),有唯一解,而且解為:如取n=100,1033次/秒的計(jì)算機(jī)大約要算10120年.可見,該方法對(duì)高階方程組計(jì)算量太大,不是一種實(shí)用的算法.實(shí)用的直接法中具有代表性的算法是高斯(Gauss,德國(guó))消去法(一般適用于低階稠密矩陣方程組求解),其它很多算法都是它的變形和應(yīng)用.為了給出高斯消去法公式,我們回顧一些知識(shí):需計(jì)算n+1個(gè)行列式,而每個(gè)行列式的計(jì)算需(n-1)*n!次乘法.計(jì)算x需n次除法1.下面三種線性方程組的解可直接求出:①②③求解次序第i行第i行00對(duì)方程組,作如下的變換,解不變!①交換兩個(gè)方程的次序.②一個(gè)方程的兩邊同時(shí)乘以一個(gè)非0的數(shù).③一個(gè)方程的兩邊同時(shí)乘以一個(gè)非0數(shù),加到另一個(gè)方程.因此,相應(yīng)地對(duì)增廣矩陣(A,b),作如下的變換,解不變!①交換矩陣的兩行.②某一行乘以一個(gè)非0的數(shù).③某一行乘以一個(gè)非0數(shù),加到另一行.

2.初等變換矩陣的性質(zhì):的思想使用初等行變換,將Ax=b轉(zhuǎn)化為同解的上三角方程組,再回代求解.==Gauss消元法0Gauss消元法的求解過程可分為兩個(gè)環(huán)節(jié):消元過程和回代過程.消元過程是將系數(shù)矩陣A化為上三角矩陣的過程回代過程是求解上三角方程組的過程下面主要討論消元過程:實(shí)質(zhì)上是將方程組的增廣矩陣

通過初等行變換化成三角方程組的增廣矩陣的過程.矩陣形式為:第1行稱為順序Gauss消去法矩陣形式:第2行矩陣形式第k行類似地進(jìn)行下去,經(jīng)n-1步消元后便得到記則上式可以寫成:或者上三角矩陣!可以證明:?要使Gauss消去法能夠進(jìn)行下去,必須有約化后的主對(duì)角元素非零。問:矩陣A在什么條件下能夠保證此條件成立?定理1.3下面,我們對(duì)一些特殊的矩陣,提出一些特定的分解法在實(shí)際計(jì)算中,用Gauss消去法解方程組,即使不為零,但其絕對(duì)值很小,也會(huì)導(dǎo)致其他元素?cái)?shù)量級(jí)的嚴(yán)重增長(zhǎng)和舍入誤差擴(kuò)散,從而會(huì)嚴(yán)重地?fù)p失精度!不能保證計(jì)算過程是數(shù)值穩(wěn)定的!注:例1.1用Gauss消去法解方程組,計(jì)算中取5位有效數(shù)字.解:消去是精確的!x√這說明:在計(jì)算過程中若規(guī)定取5位有效數(shù)字,用消去法得到的近似解與準(zhǔn)確解相差很大!√這是因?yàn)椋河?.0003做除數(shù),也會(huì)導(dǎo)致其他元素?cái)?shù)量級(jí)的嚴(yán)重增長(zhǎng)和舍入誤差擴(kuò)散,從而會(huì)嚴(yán)重地?fù)p失精度!因此,要控制舍入誤差??刂粕崛胝`差的增長(zhǎng),通常有兩種途徑:1.增加參加計(jì)算的數(shù)字位數(shù),從而使最后結(jié)果中積累起來的誤差隨之減小。例如:

采用雙精度,但增加計(jì)算時(shí)間.2.從上面的計(jì)算過程可知:有些運(yùn)算舍入誤差會(huì)擴(kuò)散,但有些運(yùn)算舍入誤差影響

比較小。例如:在做除法運(yùn)算時(shí),分母的絕對(duì)值越小,舍入誤差影響就越大!第k行對(duì)于某些特殊類型的系數(shù)矩陣,可以保證“主元不會(huì)很小”,從而不需要選主元!主元消去法的基本思想:在做除法運(yùn)算時(shí),要選取絕對(duì)值比較大的做分母!定義1.1定理1.1定理1.2可保證:Gauss消去法能進(jìn)行下去!可保證:Gauss消去法不用選主元!列主元消去法計(jì)算步驟:1、輸入矩陣階數(shù)n,增廣矩陣

A(n,n+1);2、對(duì)于(1)按列選主元:選取l

使

(2)如果,交換A的第k行與底l

行元素(3)

消元計(jì)算:3、回代計(jì)算初始化消元過程列選主元回代過程第2節(jié)矩陣三角分解法—Gauss消去法的變體通過比較法,直接導(dǎo)出L和U的計(jì)算公式.思路①Doolittle分解法的計(jì)算公式:②(1)第k列第k行1(2)計(jì)算U的第k行和L的第k列已知①Crout分解法的計(jì)算公式:②(1)第k列第k行1(2)計(jì)算L的第k列和U的第k行已知①第k列第k行(1)(2)計(jì)算L的第k列.已知①第k列(1)(2)計(jì)算D的第k個(gè)元素,然后計(jì)算L的第k列②第k列乘到第一列已知②①(1)(2)計(jì)算:L的下次對(duì)角線上的第k個(gè)元素,U的主對(duì)角線上的第k個(gè)元素.③已知第k-1列第k行第3節(jié)誤差分析---討論解對(duì)參數(shù)擾動(dòng)的敏感性問題.背景:例如:取兩組不同的右端項(xiàng):比較兩方程組的右端項(xiàng)可以看出:右端項(xiàng)有微小的差別,誤差為|?|,但它們的解卻相差很大!誤差為1860|?|。討論的問題:方程組原始數(shù)據(jù)的擾動(dòng),會(huì)對(duì)其解產(chǎn)生怎樣的影響??jī)煞匠探M的右端項(xiàng)極其靠近,解的差別卻可能很大??!幾種常用的向量范數(shù):證明。參考《矩陣擾動(dòng)分析》按分量收斂!0常用的矩陣范數(shù)是按下式確定的范數(shù):于是3.4擾動(dòng)方程組的誤差界若系數(shù)矩陣A和右端項(xiàng)b有一個(gè)擾動(dòng),記為δA,δb,那么必引起解x的一個(gè)擾動(dòng),記為δx,滿足為了定量地刻畫方程組的“病態(tài)”程度,下面對(duì)Ax=b就系數(shù)矩陣或者

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論