版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數(shù)是()A.0 B.1 C.2 D.32.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④3.實數(shù)a在數(shù)軸上對應點的位置如圖所示,把a,﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a(chǎn)<﹣a<a2 C.﹣a<a2<a D.a(chǎn)<a2<﹣a4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.45.如圖,將△ABC繞點C(0,-1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)6.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE7.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°8.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.9.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數(shù)D.可能為負數(shù)10.已知2是關于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或1011.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm212.如圖,點A,B,C在⊙O上,∠ACB=30°,⊙O的半徑為6,則的長等于()A.π B.2π C.3π D.4π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,的半徑為1,正六邊形內(nèi)接于,則圖中陰影部分圖形的面積和為________(結果保留).14.解不等式組請結合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為.15.拋物線y=2x2+3x+k﹣2經(jīng)過點(﹣1,0),那么k=_____.16.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.17.今年我市初中畢業(yè)暨升學統(tǒng)一考試的考生約有35300人,該數(shù)據(jù)用科學記數(shù)法表示為________人.18.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.20.(6分)從化市某中學初三(1)班數(shù)學興趣小組為了解全校800名初三學生的“初中畢業(yè)選擇升學和就業(yè)”情況,特對本班50名同學們進行調(diào)查,根據(jù)全班同學提出的3個主要觀點:A高中,B中技,C就業(yè),進行了調(diào)查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數(shù)最多,共有人,在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數(shù).(3)已知該班只有2位女同學選擇“就業(yè)”觀點,如果班主任從該觀點中,隨機選取2位同學進行調(diào)查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).21.(6分)如圖,在矩形ABCD中,AB=1DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設DA=1.求線段EC的長;求圖中陰影部分的面積.22.(8分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.23.(8分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.24.(10分)先化簡,再求值:,其中x=-525.(10分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.26.(12分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個定點,若是,請確定該定點的位置,若不是,請說明理由.27.(12分)觀察下列多面體,并把下表補充完整.名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數(shù)61012棱數(shù)912面數(shù)58觀察上表中的結果,你能發(fā)現(xiàn)、、之間有什么關系嗎?請寫出關系式.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.2、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負半軸上,∴c<0。∵二次函數(shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點的坐標是(1,0)?!喟褁=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。3、D【解析】
根據(jù)實數(shù)a在數(shù)軸上的位置,判斷a,﹣a,a2在數(shù)軸上的相對位置,根據(jù)數(shù)軸上右邊的數(shù)大于左邊的數(shù)進行判斷.【詳解】由數(shù)軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點睛】本題考核知識點:考查了有理數(shù)的大小比較,解答本題的關鍵是根據(jù)數(shù)軸判斷出a,﹣a,a2的位置.4、C【解析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.5、D【解析】
設點A的坐標是(x,y),根據(jù)旋轉變換的對應點關于旋轉中心對稱,再根據(jù)中點公式列式求解即可.【詳解】根據(jù)題意,點A、A′關于點C對稱,
設點A的坐標是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點A的坐標是(-a,-b-2).
故選D.【點睛】本題考查了利用旋轉進行坐標與圖形的變化,根據(jù)旋轉的性質(zhì)得出點A、A′關于點C成中心對稱是解題的關鍵6、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.7、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B8、B【解析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.9、A【解析】
利用配方法,根據(jù)非負數(shù)的性質(zhì)即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故選:A.【點睛】本題考查配方法的應用,非負數(shù)的性質(zhì)等知識,解題的關鍵是熟練掌握配方法.10、B【解析】試題分析:∵2是關于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當1是腰時,2是底邊,此時周長=1+1+2=2;②當1是底邊時,2是腰,2+2<1,不能構成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關系;等腰三角形的性質(zhì).11、C【解析】
已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.【詳解】根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關鍵.12、B【解析】
根據(jù)圓周角得出∠AOB=60°,進而利用弧長公式解答即可.【詳解】解:∵∠ACB=30°,∴∠AOB=60°,∴的長==2π,故選B.【點睛】此題考查弧長的計算,關鍵是根據(jù)圓周角得出∠AOB=60°.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
連接OA,OB,OC,則根據(jù)正六邊形內(nèi)接于可知陰影部分的面積等于扇形OAB的面積,計算出扇形OAB的面積即可.【詳解】解:如圖所示,連接OA,OB,OC,∵正六邊形內(nèi)接于∴∠AOB=60°,四邊形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面積=△BGC的面積∵弓形DE的面積=弓形AB的面積∴陰影部分的面積=弓形DE的面積+△ABC的面積=弓形AB的面積+△AGB的面積+△BGC的面積=弓形AB的面積+△AGB的面積+△AGO的面積=扇形OAB的面積==故答案為.【點睛】本題考查了扇形的面積計算公式,利用數(shù)形結合進行轉化是解題的關鍵.14、詳見解析.【解析】
先根據(jù)不等式的性質(zhì)求出每個不等式的解集,再在數(shù)軸上表示出來,根據(jù)數(shù)軸找出不等式組公共部分即可.【詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【點睛】本題考查了解一元一次不等式組的概念.15、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.16、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.17、3.53×104【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù),35300=3.53×104,故答案為:3.53×104.18、1【解析】
根據(jù)概率的公式進行計算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【點睛】考查概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析.【解析】
根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.20、(4)A高中觀點.4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數(shù),用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級學生數(shù)乘以選擇“B中技”觀點的百分比即可估計該校初三學生選擇“中技”觀點的人數(shù);(4)先計算出該班選擇“就業(yè)”觀點的人數(shù)為4人,則可判斷有4位女同學和4位男生選擇“就業(yè)”觀點,再列表展示44種等可能的結果數(shù),找出出現(xiàn)4女的結果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學生選擇A高中觀點的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學生選擇“中技”觀點的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學和4位男生選擇“就業(yè)”觀點,列表如下:共有44種等可能的結果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統(tǒng)計圖.21、(1);(1).【解析】
(1)根據(jù)矩形的性質(zhì)得出AB=AE=4,進而利用勾股定理得出DE的長,即可得出答案;(1)利用銳角三角函數(shù)關系得出∠DAE=60°,進而求出圖中陰影部分的面積為:,求出即可.【詳解】解:(1)∵在矩形ABCD中,AB=1DA,DA=1,∴AB=AE=4,∴DE=,∴EC=CD-DE=4-1;(1)∵sin∠DEA=,∴∠DEA=30°,∴∠EAB=30°,∴圖中陰影部分的面積為:S扇形FAB-S△DAE-S扇形EAB=.【點睛】此題主要考查了扇形的面積計算以及勾股定理和銳角三角函數(shù)關系等知識,根據(jù)已知得出DE的長是解題關鍵.22、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】
(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;(2)根據(jù)等腰三角形的性質(zhì)得到∠3=∠COD=∠DEO=60°,根據(jù)平行線的性質(zhì)得到∠4=∠1,根據(jù)全等三角形的性質(zhì)得到∠CBO=∠CDO=90°,于是得到結論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點睛】此題主要考查了切線的性質(zhì),同角的余角相等,等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定,判斷出△ABO≌△CDE是解本題的關鍵.23、(1);(2)【解析】
(1)根據(jù)概率公式計算可得;(2)畫樹狀圖列出所有等可能結果,從中找到符合要求的結果數(shù),利用概率公式計算可得.【詳解】解:(1)由于共有A、B、W三個座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹狀圖如下:由圖可知,共有6種等可能結果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.25、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質(zhì)和菱形的性質(zhì)即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質(zhì)和面積;2.平行四邊形的性質(zhì);3.解直角三角形.26、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當a=b時,a+b最小,據(jù)此求解可得;(4)設該圓與AC的交點為D,連接DM、DN,證△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級語文《海上英魂》說課稿
- 擔保反擔保協(xié)議模板精簡2024
- 農(nóng)場做飯合同范本
- 天津川鑫鋼材庫施工組織設計
- 分撥合同范本
- 加工印刷合同范本
- 2024年工程合作承包協(xié)議模板
- 2024大學生實習工作總結10篇
- 監(jiān)控運維合同范本
- 2024年車輛長途運輸服務協(xié)議樣本
- 人力資源管理師(三級)課件合集
- 2024貴州省榕江縣事業(yè)單位招聘100人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 綿陽市高中2022級(2025屆)高三第一次診斷性考試(一診)物理試卷
- 標志設計 課件 2024-2025學年人教版(2024)初中美術七年級上冊
- 校園班級大隊委競選內(nèi)容課件演示
- 2024版合同范本之711便利店加盟合同
- 醫(yī)療機構工作人員廉潔從業(yè)九項準則
- 1《觀潮》(課件)語文四年級上冊統(tǒng)編版
- 部編版小學二年級道德與法治上冊 第四單元 我們生活的地方 學歷案設計
- 2024年秋國開形策大作業(yè)【附3份答案】:中華民族現(xiàn)代文明有哪些鮮明特質(zhì)?建設中華民族現(xiàn)代文明的路徑是什么
- 2024-2030年環(huán)保涂料產(chǎn)品入市調(diào)查研究報告
評論
0/150
提交評論