




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第2章統(tǒng)計(jì)數(shù)據(jù)的描述本章關(guān)鍵詞:計(jì)量尺度集中趨勢離散趨勢本章結(jié)構(gòu)2.1數(shù)據(jù)的計(jì)量尺度2.2統(tǒng)計(jì)數(shù)據(jù)的來源2.3統(tǒng)計(jì)數(shù)據(jù)的質(zhì)量2.4統(tǒng)計(jì)數(shù)據(jù)的整理2.5分布集中趨勢的測度2.6分布離散趨勢的測度2.7略2.8莖葉圖與箱線圖2.9統(tǒng)計(jì)表與統(tǒng)計(jì)圖2.2統(tǒng)計(jì)數(shù)據(jù)的來源統(tǒng)計(jì)數(shù)據(jù)的間接來源統(tǒng)計(jì)數(shù)據(jù)的直接來源2.2.1統(tǒng)計(jì)數(shù)據(jù)的間接來源1、公開出版物:《中國統(tǒng)計(jì)年鑒》、《中國統(tǒng)計(jì)摘要》、《中國社會統(tǒng)計(jì)年鑒》、《中國工業(yè)經(jīng)濟(jì)統(tǒng)計(jì)年鑒》、《中國農(nóng)村統(tǒng)計(jì)年鑒》、《中國人口統(tǒng)計(jì)年鑒》、《中國市場統(tǒng)計(jì)年鑒》、《世界經(jīng)濟(jì)年鑒》、《國外經(jīng)濟(jì)統(tǒng)計(jì)資料》、《世界發(fā)展報(bào)告》……Internet
2.網(wǎng)絡(luò)中國統(tǒng)計(jì)年鑒2001中國人口統(tǒng)計(jì)年鑒中國市場統(tǒng)計(jì)年鑒世界發(fā)展報(bào)告世界經(jīng)濟(jì)年檢工業(yè)普查數(shù)據(jù)中國統(tǒng)計(jì)出版社2.2.2直接獲取數(shù)據(jù)統(tǒng)計(jì)調(diào)查方式普查抽樣調(diào)查統(tǒng)計(jì)報(bào)表重典點(diǎn)型調(diào)調(diào)查查普查(census)1、它是為某一特定目的專門組織的一次性全面調(diào)查2. 通常是一次性或周期性的3. 一般需要規(guī)定統(tǒng)一的標(biāo)準(zhǔn)調(diào)查時(shí)間4. 數(shù)據(jù)的規(guī)范化程度較高5. 應(yīng)用范圍比較狹窄總體小常識每逢尾數(shù)為“0”的年份進(jìn)行人口普查,我國從1953~2000年共進(jìn)行了5次人口普查(1953,,1982,1990,2000)普查應(yīng)該規(guī)定統(tǒng)一的標(biāo)準(zhǔn)調(diào)查時(shí)間,以避免數(shù)據(jù)的重復(fù)和遺漏,第五次人口普查的標(biāo)準(zhǔn)時(shí)間是2000年11月1日零時(shí)。每逢尾數(shù)為“3”的年份進(jìn)行第三產(chǎn)業(yè)普查每逢尾數(shù)為“5”的年份進(jìn)行工業(yè)普查每逢尾數(shù)為“7”的年份進(jìn)行農(nóng)業(yè)普查每逢尾數(shù)為“1”或“6”的年份進(jìn)行統(tǒng)計(jì)基本單位普查抽樣調(diào)查(sampling)它是統(tǒng)計(jì)調(diào)查中應(yīng)用最廣、最為重要的調(diào)查方法,它是通過隨機(jī)樣本對總體數(shù)量規(guī)律性進(jìn)行推斷的調(diào)查研究方法。具有經(jīng)濟(jì)性、時(shí)效性強(qiáng)、適應(yīng)面廣、準(zhǔn)確性高等特點(diǎn)2.3統(tǒng)計(jì)數(shù)據(jù)的質(zhì)量誤差分為非抽樣誤差和抽樣誤差非抽樣誤差又可以分為登記性誤差和系統(tǒng)性誤差抽樣誤差是利用樣本推斷總體是產(chǎn)生的誤差,是由于樣本的代表性產(chǎn)生的,它與樣本的容量有關(guān)2.4統(tǒng)計(jì)數(shù)據(jù)的整理統(tǒng)計(jì)整理是根據(jù)統(tǒng)計(jì)研究的目的和任務(wù),將搜集到統(tǒng)計(jì)資料進(jìn)行科學(xué)的加工和匯總的工作過程。統(tǒng)計(jì)整理的一般過程:數(shù)據(jù)的審核、篩選和排序數(shù)據(jù)分組數(shù)據(jù)匯總編制統(tǒng)計(jì)表2.4.1數(shù)據(jù)的審核、篩選、排序?qū)υ紨?shù)據(jù)的審核完整性審核檢查應(yīng)調(diào)查的單位或個(gè)體是否有遺漏所有的調(diào)查項(xiàng)目或指標(biāo)是否填寫齊全準(zhǔn)確性審核檢查數(shù)據(jù)是否真實(shí)反映客觀實(shí)際情況,內(nèi)容是否符合實(shí)際檢查數(shù)據(jù)是否有錯誤,計(jì)算是否正確等對次級(二手)資料的審核1、適用性審核2、時(shí)效性審核3、確認(rèn)是否必要做進(jìn)一步的加工整理數(shù)據(jù)篩選的內(nèi)容包括:將某些不符合要求的數(shù)據(jù)或有明顯錯誤的數(shù)據(jù)予以剔除將符合某種特定條件的數(shù)據(jù)篩選出來,而不符合特定條件的數(shù)據(jù)予以剔出2.4.2統(tǒng)計(jì)數(shù)據(jù)的分組分組標(biāo)志是統(tǒng)計(jì)分組的依據(jù)或標(biāo)準(zhǔn),正確選擇分組標(biāo)志是進(jìn)行統(tǒng)計(jì)分組的關(guān)鍵,要遵循窮盡性和排斥性原則。按照分組標(biāo)志的性質(zhì)分為:1、品質(zhì)分組(按照品質(zhì)標(biāo)志分組)適合于列名尺度和順序尺度計(jì)量的數(shù)據(jù)。例:人口按性別分組,大學(xué)按專業(yè)分組、企業(yè)按經(jīng)營類型分組,分?jǐn)?shù)按照優(yōu)、良、中、合格、不合格劃分等。2、數(shù)量分組(按照數(shù)量標(biāo)志分組),適合于間隔尺度和比例尺度計(jì)量的數(shù)據(jù)。例:人口按年齡、身高分組,企業(yè)按勞動生產(chǎn)率分組,商店按照銷售額分組。品質(zhì)數(shù)列舉例表2-11999年末廣東省從業(yè)人員分布表類別人數(shù)(萬人)比重(%)國有經(jīng)濟(jì)514.1013.54集體經(jīng)濟(jì)2568.2067.65私營經(jīng)濟(jì)195.375.15個(gè)體經(jīng)濟(jì)317.798.37聯(lián)營經(jīng)濟(jì)2.790.07股份制經(jīng)濟(jì)52.451.38外商投資經(jīng)濟(jì)40.981.08港澳臺投資經(jīng)濟(jì)103.872.74其他經(jīng)濟(jì)0.770.02合計(jì)3796.32100表2-2某車間30名工人周加工零件數(shù)的頻數(shù)分布表按周加工零件數(shù)分組次數(shù)80~90390~1007100~11013110~1205120~1302合計(jì)30分組形式等距分組異距分組單項(xiàng)式分組組距式分組統(tǒng)計(jì)分組中的幾個(gè)概念單項(xiàng)式數(shù)列:指以每個(gè)變量值作為一組的名稱而形成的分布數(shù)列。(例:把廣州市常住人口按照每個(gè)家庭人口數(shù)分組而得到的數(shù)列。表2-1也是單項(xiàng)式數(shù)列。適用于變量較少的情形。)家庭人口數(shù)(人)戶數(shù)(戶)112027634574以上47合計(jì)700某單位家庭人口數(shù)分布表組距式數(shù)列:是以變量值的一定變動范圍作為組別,按各組順序排列編制的分布數(shù)列。組距:各組內(nèi)變量變動的范圍,各組的兩個(gè)端點(diǎn)值叫組限。組距=上限-下限封口組:同時(shí)包含上限和下限的組,有三種:a≤x≤b;a<x≤b;a≤x<b開口組:不含上限或不含下限的組。以下開口組:x<a,800元以下以上開口組:x>b,1500元以上例1、
某企業(yè)80名職工的月收入(單位:元)如下:
16521237165216651750193420381870199819201800179316302354197313021630145215431699204012001260145216701050185416002595227018701700171221431154186020701658196518701298110915432076200015781356123515461753175817841958169010271435167912802300156017941573183517791893198715791890167018301690173019401570178021401705164516782478
第一步:將上述數(shù)據(jù)從小到大(亦可從大到小)排序。
10271050110911541200123512371260128012981302135614351452145215431543154615601570157315781579160016301630164516491652165216581665167016701678167916901690169917001705171217301750175317581779178017841793179418001830185418601870187018701890189319201934194019581965197319871998200020382040207020762140214322702300235424782595
幾個(gè)概念1、組距:各組內(nèi)變量值變動的范圍。2、組限:組距的兩個(gè)端點(diǎn)值。3、下限:每個(gè)組變量的起點(diǎn)值。4、上限:每個(gè)組變量的終點(diǎn)值。5、組距=上限-下限
6、以上(下)開口組
組距式分組的步驟:
1、確定組數(shù)建議組數(shù)m=1+3.322lgN其中:N是總體單位數(shù)。2、確定組距
在等距分組的情況下:
組距(C)=全距(R)÷組數(shù)(m)在一般情況下,組距與組數(shù)成反方向變動。3、總體單位數(shù)歸集原則“下閉上開”或“含下限不含上限”原則。按月收入分組(元)職工人數(shù)(人)(即頻數(shù))比重(%)(即頻率)1200以下
45[1200,1400)810[1400,1600)1113.75[1600,1800)2835[1800,2000)1721.25[2000,2200)78.75[2200,2400)33.752400以上22.5合計(jì)80100幾個(gè)簡單計(jì)算1、組中值(Classmidpoint)封口組:組中值=(上限+下限)/2以下開口組:組中值=上限—相鄰組距/2以上開口組:組中值=下限+相鄰組距/2累計(jì)頻數(shù)和累計(jì)頻率有兩種累計(jì)法:1、向下累積——從最小的變量值(總體頻率)開始累計(jì),一直累計(jì)到該變量值作為上限的一組為止。2、向上累積——從最大的變量值(總體頻率)開始累計(jì),一直累計(jì)到該變量值作為下限的一組為止。表2-3組中值、累計(jì)頻數(shù)、累計(jì)頻率計(jì)算表按月收入分組(元)組中值頻數(shù)頻率(%)累計(jì)頻數(shù)累計(jì)頻率(%)向下向上向下向上1200以下11004548051001200-14001300810127615951400-160015001113.75236828.75851600-180017002835515763.7571.251800-200019001721.2568298536.252000-2200210078.75751293.75152200-2400230033.7578597.56.252400以上250022.58021002.5合計(jì)——80100————————總體單位數(shù)歸集的原則對于離散型變量分組,相鄰兩組的上限和下限通常以兩個(gè)確定的不同數(shù)據(jù)表示,如:P23表2.09;對于連續(xù)型變量,相鄰兩組的上限和下限通常是重合的。如:P23表2.10;對于重合的標(biāo)志值歸組一般采取“下閉上開”或“含下限不含上限”的原則。習(xí)題1:某連續(xù)變量數(shù)列,其末組為500以上。又知其相鄰組的組中值為480,則末組的組中值為()
A、520B、510C、530D、540習(xí)題2:
統(tǒng)計(jì)分組是把總體中性質(zhì)不相同的單位歸并在一起,把總體中性質(zhì)相同的單位區(qū)別開來。()習(xí)題3:變量數(shù)列編制中,在條件不變的情況下,組數(shù)分得越多,組距也越大。()2.4.3次數(shù)分配直方圖1、用矩形的寬度和高度來表示頻數(shù)分布的圖形,實(shí)際上是用矩形的面積來表示各組的頻數(shù)分布2、在直角坐標(biāo)中,用橫軸表示數(shù)據(jù)分組,縱軸表示頻數(shù)或頻率,各組與相應(yīng)的頻數(shù)就形成了一個(gè)矩形,即直方圖(Histogram)3、直方圖下的總面積等于1直方圖的繪制(例題分析)【例】某電腦公司2002年前四個(gè)月各天的銷售量數(shù)據(jù)(單位:臺)。試對數(shù)據(jù)進(jìn)行分組。
頻數(shù)分布表的編制1、確定組數(shù):根據(jù)Sturges提出的經(jīng)驗(yàn)公式得組數(shù)K為:確定各組的組距:
組距=(237-141)÷10=9.610用Excel制作頻數(shù)分布表
1、等距分組表(上下組限重疊)2、等距分組表(上下組限間斷)3、等距分組表(使用開口組)分組數(shù)據(jù)的圖示(直方圖的繪制)140150210直方圖下的面積之和等于1某電腦公司銷售量分布的直方圖我一眼就看出來了,銷售量在170~180之間的天數(shù)最多!190200180160170頻數(shù)(天)25201510530220230240分組數(shù)據(jù)—折線圖折線圖也稱頻數(shù)多邊形圖(Frequencypolygon)是在直方圖的基礎(chǔ)上,把直方圖頂部的中點(diǎn)(組中值)用直線連接起來,再把原來的直方圖抹掉折線圖的兩個(gè)終點(diǎn)要與橫軸相交,具體的做法是1、第一個(gè)矩形的頂部中點(diǎn)通過豎邊中點(diǎn)(即該組頻數(shù)一半的位置)連接到橫軸,最后一個(gè)矩形頂部中點(diǎn)與其豎邊中點(diǎn)連接到橫軸2、折線圖下所圍成的面積與直方圖的面積相等,二者所表示的頻數(shù)分布是一致的折線圖的繪制折線圖與直方圖下的面積相等!140150210某電腦公司銷售量分布的折線圖190200180160170220230240頻數(shù)(天)25201510530曲線圖的繪制在繪制直方圖的過程中,如果組距足夠小、組數(shù)足夠多,此時(shí)直方圖上的折線圖就接近于一條平滑的曲線,這種圖形就是曲線圖。常見的曲線圖有頻數(shù)、頻率分布曲線圖,動態(tài)曲線圖,相關(guān)曲線圖等。根據(jù)曲線圖表現(xiàn)出來的形狀,我們把生活中常見的幾種分布圖分別稱為:鐘形圖、U形圖、J形圖。頻數(shù)分布的類型右偏分布左偏分布正J型分布反J型分布U型分布圖2-7幾種常見的頻數(shù)分布對稱分布洛倫茨曲線20世紀(jì)初美國經(jīng)濟(jì)學(xué)家、統(tǒng)計(jì)學(xué)家洛倫茨(M.E.Lorentz)根據(jù)意大利經(jīng)濟(jì)學(xué)家巴雷特(V.Pareto)提出的收入分配公式繪制而成描述收入和財(cái)富分配性質(zhì)的曲線分析該國家或地區(qū)分配的平均程度
AB累積的人口百分比累積的收入百分比絕對公平線基尼系數(shù)20世紀(jì)初意大利經(jīng)濟(jì)學(xué)家基尼(G.Gini)根據(jù)洛倫茨曲線給出了衡收入分配平均程度的指標(biāo)
A表示實(shí)際收入曲線與絕對平均線之間的面積B表示實(shí)際收入曲線與絕對不平均線之間的面積如果A=0,則基尼系數(shù)=0,表示收入絕對平均如果B=0,則基尼系數(shù)=1,表示收入絕對不平均基尼系數(shù)在0和1之間取值一般認(rèn)為,基尼系數(shù)若小于0.2,表明分配平均;基尼系數(shù)在0.2至0.4之間是比較適當(dāng)?shù)?,即一個(gè)社會既有效率又沒有造成極大的分配不公;基尼系數(shù)在0.4被認(rèn)為是收入分配不公平的警戒線,超過了0.4應(yīng)該采取措施縮小這一差距。
AB我國全國居民可支配收入的基尼系數(shù)在不斷地?cái)U(kuò)大。改革初期的1984年,基尼系數(shù)是0.26,2000年上升到0.42,達(dá)到了國際公認(rèn)的警戒線.最近官方公布的中國全國居民收入的基尼系數(shù),2003年是0.479,2004年是0.473,2005年0.485,2006年0.487,2007年0.484,2008年0.491。然后逐步回落,2009年0.490,2010年0.481,2011年0.477,2012年0.474。資料顯示,2003年中國的收入分配中,最貧困的10%的人口,所得的收入占國民收入總額的1.8%,而最富有的10%的人口,所得的收入占國民收入總額的將近30%聯(lián)合國開發(fā)計(jì)劃署公布的一組數(shù)據(jù)也顯示,中國目前的基尼系數(shù)為0.45,占總?cè)丝?0%的最貧困人口在收入或消費(fèi)中所占的份額只有4.7%,占總?cè)丝?0%的最富裕人口占收入或消費(fèi)的份額則高達(dá)50%。
我國貧富懸殊達(dá)警戒水平部分人靠官商勾結(jié)發(fā)家2005年09月19日09:17中國新聞網(wǎng)當(dāng)前較為普遍的看法是,中國的貧富懸殊之大已經(jīng)突破合理的限度(國際公認(rèn)的基尼系數(shù)警戒線為0.4),且有繼續(xù)擴(kuò)大之勢。長此以往,不僅難以實(shí)現(xiàn)共同富裕,還很可能引發(fā)各種社會不穩(wěn)定現(xiàn)象。特別值得注意的是,根據(jù)許多國家和地區(qū)的經(jīng)驗(yàn),人均GDP由1000美元向3000美元過渡的時(shí)期,是社會矛盾的多發(fā)期。中國恰好處在這個(gè)階段。決策者不能不對貧富懸殊問題予以高度的重視。世界經(jīng)濟(jì)論壇第四屆新領(lǐng)軍者年會(2010年夏季達(dá)沃斯論壇)9月13日下午在天津梅江會展中心開幕,國務(wù)院總理溫家寶出席開幕式并致辭。溫家寶表示,將加快推進(jìn)收入分配制度改革,努力提高居民收入在國民收入中的比重溫家寶說:“我們要堅(jiān)持內(nèi)外均衡發(fā)展,著力構(gòu)建擴(kuò)大內(nèi)需,特別是消費(fèi)需求的長效機(jī)制,中國有世界上潛力最大的國內(nèi)市場,充分挖掘市場的潛力、有效釋放國內(nèi)需求是促進(jìn)中國經(jīng)濟(jì)長期穩(wěn)定發(fā)展的關(guān)鍵所在,也是解決經(jīng)濟(jì)運(yùn)行中突出矛盾的重要途徑?!睖丶覍毐硎?,我們將加快推進(jìn)收入分配制度改革,努力提高居民收入在國民收入中的比重和勞動報(bào)酬在初次分配中的比重。創(chuàng)造條件讓更多的群眾擁有財(cái)產(chǎn)性收入,盡快扭轉(zhuǎn)收入差距擴(kuò)大的趨勢,促進(jìn)居民收入和消費(fèi)可持續(xù)增長。我們將堅(jiān)持統(tǒng)籌城鄉(xiāng)區(qū)域的協(xié)調(diào)發(fā)展,積極穩(wěn)妥地推進(jìn)城鎮(zhèn)化,因地制宜地把符合條件的農(nóng)民工逐步轉(zhuǎn)為城鎮(zhèn)居民,繼續(xù)加快新農(nóng)村建設(shè),加強(qiáng)農(nóng)村基礎(chǔ)設(shè)施建設(shè)和改善公共服務(wù),繼續(xù)實(shí)施區(qū)域發(fā)展總體戰(zhàn)略,大力推進(jìn)西部大開發(fā)和東北地區(qū)等老工業(yè)基地的振興,促進(jìn)中部崛起,著力培育內(nèi)需增長的新動力,拓展農(nóng)村和中西部地區(qū)的內(nèi)需增長的新空間2.5分布集中趨勢的測度2.5.1眾數(shù)2.5.2中位數(shù)2.5.3分位數(shù)2.5.4均值2.5.5幾何平均數(shù)2.5.6切尾均值(略)2.5.7眾數(shù)、中位數(shù)、均值之間的關(guān)系數(shù)據(jù)分布的特征集中趨勢(位置)偏態(tài)和峰度(形狀)離中趨勢
(分散程度)2.5.1眾數(shù)(mode)集中趨勢的測度值之一眾數(shù)是總體中出現(xiàn)次數(shù)最多的那個(gè)變量值不受極端值的影響由于分布數(shù)列的分布不同,有的數(shù)列可能沒有眾數(shù)或有幾個(gè)眾數(shù)主要用于定類數(shù)據(jù),也可用于定序數(shù)據(jù)和數(shù)值型數(shù)據(jù)眾數(shù)(眾數(shù)的不唯一性)無眾數(shù)
原始數(shù)據(jù):10591268一個(gè)眾數(shù)
原始數(shù)據(jù):659855多于一個(gè)眾數(shù)
原始數(shù)據(jù):252828364242單變量分組計(jì)算眾數(shù)例某班同學(xué)按年齡分組資料如表4.4所示,求中位數(shù)。
單項(xiàng)數(shù)列求眾數(shù)計(jì)算表年齡(歲)學(xué)生人數(shù)較小制累計(jì)次數(shù)較大制累計(jì)次數(shù)1718192021582692513394850504537112合計(jì)50——分組數(shù)據(jù)的眾數(shù)1.眾數(shù)的值與相鄰兩組頻數(shù)的分布有關(guān)4.該公式假定眾數(shù)組的頻數(shù)在眾數(shù)組內(nèi)均勻分布2.相鄰兩組的頻數(shù)相等時(shí),眾數(shù)組的組中值即為眾數(shù)Mo3.相鄰兩組的頻數(shù)不相等時(shí),眾數(shù)采用下列近似公式計(jì)算MoMo分組數(shù)據(jù)的眾數(shù)(舉例)表2-4某車間50名工人日加工零件數(shù)分組表按零件數(shù)分組頻數(shù)(人)累積頻數(shù)105~110110~115115~120120~125125~130130~135135~140358141064381630404650合計(jì)50—【例】根據(jù)某工廠50名工人日加工零件個(gè)數(shù)的數(shù)據(jù),計(jì)算他們?nèi)占庸ち慵?shù)的眾數(shù)練習(xí):現(xiàn)利用下表的資料,計(jì)算眾數(shù)。按零件數(shù)分組(個(gè))職工人數(shù)(人)累計(jì)次數(shù)40~5050~6060~7070~8080~9020408050102060140190200合計(jì)200—【解】按公式計(jì)算:(個(gè))1、由組距式數(shù)列確定眾數(shù)時(shí),如果眾數(shù)組相鄰兩組的次數(shù)相等,則()。A.眾數(shù)為零B.眾數(shù)組的組中值就是眾數(shù)C.眾數(shù)不能確定D.眾數(shù)組的組限就是眾數(shù)2、眾數(shù)的大小只取決于眾數(shù)組相鄰組次數(shù)的多少。()BX2.5.2中位數(shù)(median)中位數(shù)是排序后處于中間位置上的數(shù)值不受極端值的影響主要用于定序數(shù)據(jù),也可用數(shù)值型數(shù)據(jù),但不能用于定類數(shù)據(jù)各變量值與中位數(shù)的離差絕對值之和最小,即Me50%50%中位數(shù)(位置的確定)未分組數(shù)據(jù):組距分組數(shù)據(jù):未分組數(shù)據(jù)的中位數(shù)(計(jì)算公式)數(shù)值型未分組數(shù)據(jù)的中位數(shù)(奇數(shù)個(gè))【例】:9個(gè)家庭的人均月收入數(shù)據(jù)原始數(shù)據(jù):15007507801080850960200012501630排序:75078085096010801250150016302000位置:123456789中位數(shù)=1080數(shù)值型未分組數(shù)據(jù)的中位數(shù)(偶數(shù)個(gè))【例】:10個(gè)家庭的人均月收入數(shù)據(jù)排序:660
75078085096010801250150016302000位置:12345678910例題:按日產(chǎn)零件數(shù)分組(件)工人數(shù)(人)2633110321434273618418合計(jì)80按日產(chǎn)零件數(shù)分組(件)工人數(shù)(人)向上累計(jì)次數(shù)26333110133214273427543618-418-合計(jì)80-數(shù)值型分組數(shù)據(jù)的中位數(shù)根據(jù)位置公式確定中位數(shù)所在的組采用下列近似公式計(jì)算:
該公式假定中位數(shù)組的頻數(shù)在該組內(nèi)均勻分布數(shù)值型分組數(shù)據(jù)的中位數(shù)(算例)表2-5某車間50名工人日加工零件數(shù)分組表按零件數(shù)分組頻數(shù)(人)累積頻數(shù)105~110110~115115~120120~125125~130130~135135~140358141064381630404650合計(jì)50—【例】根據(jù)表中的數(shù)據(jù),計(jì)算50名工人日加工零件數(shù)的中位數(shù)按日產(chǎn)量分組(千克)工人數(shù)(人)向上累計(jì)次數(shù)60以下101060~70192970~80507980~903611590~10027-100~11014-110~1208-合計(jì)164-練習(xí):計(jì)算下表分組數(shù)據(jù)的中位數(shù)3、確定參數(shù)1、計(jì)算
2、找到中位數(shù)所在組
4、代入公式計(jì)算練習(xí):現(xiàn)利用下表的資料,計(jì)算中位數(shù)。按零件數(shù)分組(個(gè))職工人數(shù)(人)累計(jì)次數(shù)40~5050~6060~7070~8080~9020408050102060140190200合計(jì)200—按下限公式計(jì)算:(個(gè))解:2.5.3四分位數(shù)1. 集中趨勢的測度值之一2. 排序后處于25%和75%位置上的值3.不受極端值的影響4.主要用于定序數(shù)據(jù),也可用于數(shù)值型數(shù)據(jù),但不能用于定類數(shù)據(jù)QLQMQU25%25%25%25%四分位數(shù)未分組數(shù)據(jù):組距分組數(shù)據(jù):(分類和數(shù)值型數(shù)據(jù))下四分位數(shù)(QL)位置=N+14上四分位數(shù)(QU)位置=3(N+1)4下四分位數(shù)(QL)位置=N4上四分位數(shù)(QL)位置=3N4數(shù)值型未分組數(shù)據(jù)的四分位數(shù)(奇數(shù)個(gè))【例】:9個(gè)家庭的人均月收入數(shù)據(jù)數(shù)據(jù):15007507801080850960200012501630排序:75078085096010801250150016302000位置:123456789數(shù)值型未分組數(shù)據(jù)的四分位數(shù)(偶數(shù)個(gè))【例】:10個(gè)家庭的人均月收入數(shù)據(jù)排序:660
75078085096010801250150016302000位置:1234
5678910
數(shù)值型分組數(shù)據(jù)的四分位數(shù)(計(jì)算公式)下四分位數(shù):
上四分位數(shù):其中Sl-1、Su-1分別為Ql、Qu所在組以前各組的累積頻數(shù)2.5.4均值1、設(shè)一組數(shù)據(jù)為:X1,X2,…,XN簡單算術(shù)平均數(shù)的計(jì)算公式為2、設(shè)分組后的數(shù)據(jù)為:X1,X2,…,XK
相應(yīng)的頻數(shù)為:F1,F(xiàn)2,…,F(xiàn)K加權(quán)算術(shù)平均數(shù)的計(jì)算公式為分組資料計(jì)算算術(shù)平均數(shù)的步驟:(一)單項(xiàng)式變量數(shù)列計(jì)算算術(shù)平均數(shù)1、確定x、f2、計(jì)算xf3、計(jì)算4、代入公式(二)組距式變量數(shù)列計(jì)算算術(shù)平均數(shù)1、將組距式變量數(shù)列變?yōu)閱雾?xiàng)式變量數(shù)列(方法:計(jì)算組中值作為x)2、同上例題:計(jì)算工人平均日產(chǎn)量日產(chǎn)量(件)工人數(shù)(人)248261529363211合計(jì)70日產(chǎn)量(件)x工人數(shù)fxf2481922615390293610443211352合計(jì)701978加權(quán)均值
(例題分析)
按月收入分組(元)職工人數(shù)(人)
比重(%)1200以下
45[1200,1400)810[1400,1600)1113.75[1600,1800)2835[1800,2000)1721.25[2000,2200)78.75[2200,2400)33.752400以上22.5合計(jì)80100按月收入分組(元)職工人數(shù)(人)f組中值xxf1200以下
411004400[1200,1400)8130010400[1400,1600)11150016500[1600,1800)28170047600[1800,20002000,2200)7210014700[2200,2400)3230069002400以上225005000合計(jì)80-137800習(xí)題1:某企業(yè)工人日產(chǎn)量資料如下:按日產(chǎn)量分組(千克)工人數(shù)(人)60以下1060~701970~805080~903690~10027100~11014110~1208合計(jì)164按日產(chǎn)量分組(千克)工人數(shù)(人)f組中值xxf60以下105555060~701965123570~805075375080~903685306090~10027952565100~110141051470110~1208115920合計(jì)164-13550怎樣理解加權(quán)算術(shù)平均數(shù)的權(quán)數(shù)1、簡單算術(shù)平均數(shù)的大小只與變量值的大小有關(guān)。而加權(quán)算術(shù)平均數(shù)的大小不僅受各組變量大小的影響,而且受各組次數(shù)大小的影響,我們把各組次數(shù)稱為權(quán)數(shù)。2、權(quán)數(shù)的形式()
算術(shù)平均數(shù)的性質(zhì)1、各變量值與其算術(shù)平均數(shù)離差之和等于零。2、各變量值與其算術(shù)平均數(shù)離差平方和為最小值。證明:設(shè)的任意數(shù),則,以為中心的離差平方和為:為不等于證明:各單位標(biāo)志值與算術(shù)平均數(shù)的離差平方和最小均值的特點(diǎn):集中趨勢的最常用測度值一組數(shù)據(jù)的均衡點(diǎn)所在體現(xiàn)了數(shù)據(jù)的必然性特征易受極端值的影響用于數(shù)值型數(shù)據(jù),不能用于列名數(shù)據(jù)和順序數(shù)據(jù)補(bǔ)充:調(diào)和平均數(shù)(倒數(shù)平均數(shù))1. 集中趨勢的測度值之一2. 是平均數(shù)的另一種表現(xiàn)形式,當(dāng)缺乏總體單位數(shù)的資料時(shí),必須采用算術(shù)平均數(shù)的變化形式3. 易受極端值的影響(二)調(diào)和平均數(shù)1.簡單調(diào)和平均數(shù)
2.加權(quán)調(diào)和平均數(shù)例1、某農(nóng)貿(mào)市場上某種蔬菜的價(jià)格如下:早市0.5元/斤,中市0.45元/斤,晚市0.4元/斤,如果早、中、晚各買1元錢的蔬菜,求該種蔬菜的平均價(jià)格。解法一:解法二:例2、廣州市甲、乙兩個(gè)菜場蔬菜的價(jià)格及銷售額資料如下表,請問那個(gè)菜場的蔬菜平均價(jià)格較高,并說明均價(jià)較高的原因。品種單價(jià)(元/千克)銷售額甲菜場乙菜場A2.002200800B2.2015401320C2.605202600根據(jù)表格資料可以得到下表品種單價(jià)(元/千克)x銷售額(元)m銷售量(m/x)甲菜場乙菜場甲菜場乙菜場A2.0022008001100400B2.2015401320700600C2.6052026002001000合計(jì)——4260472020002000分析:乙菜場蔬菜的平均價(jià)格高于甲菜場,主要原因是價(jià)格較高的蔬菜C在乙菜場的銷售量中的比重較大,甲菜場銷售價(jià)格較低的蔬菜A的比重較大,因此乙的平均價(jià)格較高。說明:調(diào)和平均數(shù)是算術(shù)平均數(shù)的變形在調(diào)和平均數(shù)的計(jì)算公式中,如果令則:原來只是計(jì)算時(shí)使用了不同的數(shù)據(jù)!算術(shù)平均數(shù)的其他數(shù)學(xué)性質(zhì)1、算術(shù)平均數(shù)與總體單位數(shù)的乘積等于各單位標(biāo)志值之和。2、對各單位標(biāo)志值加、減、乘、除任意數(shù)a(相除a不為零),則算術(shù)平均數(shù)也要相應(yīng)的加、減、乘、除該數(shù)a幾何平均數(shù)(概念要點(diǎn))1.集中趨勢的測度值之一2.N個(gè)變量值乘積的N次方根,用G表示3.適用于特殊的數(shù)據(jù)(一般是發(fā)展速度類數(shù)據(jù))4.主要用于計(jì)算平均發(fā)展速度和平均比率5、計(jì)算公式為簡單幾何平均數(shù):加權(quán)幾何平均數(shù):兩邊同時(shí)取對數(shù):幾何平均數(shù)(舉例)【例】一位投資者持有一種股票,1996年、1997年、1998年和1999年收益率分別為4.5%、2.0%、3.5%、5.4%。計(jì)算該投資者在這四年內(nèi)的平均收益率。平均收益率=103.84%-1=3.84%例:某地區(qū)近20年來的經(jīng)濟(jì)發(fā)展速度如下表,求20年中該地區(qū)經(jīng)濟(jì)的平均發(fā)展速度。發(fā)展速度x(%)年數(shù)f(次數(shù))lgxflgx10212.00862.008610552.021210.1059107102.029420.293811042.04148.1656合計(jì)20——40.5740則G=106.83%練習(xí):某水泥廠1997年的水泥產(chǎn)量是1996年的110%,1998年比1997增長了16%,1999年與1998年相比的增長率為20%。求三年的平均發(fā)展速度。幾何平均數(shù)的適用范圍幾何平均數(shù)主要用于計(jì)算平均發(fā)展速度。2.5.6切尾均值思考:全國歌手打獎賽是怎么對選手評分?為什么如此?2.5.7眾數(shù)、中位數(shù)與算術(shù)平均數(shù)之間的關(guān)系1、在正態(tài)分布的情況下:對稱分布
均值=中位數(shù)=眾數(shù)2、在左偏分布的情況下:左偏分布均值
中位數(shù)
眾數(shù)3、在右偏分布的情況下:右偏分布眾數(shù)
中位數(shù)
均值中位數(shù),眾數(shù),算術(shù)平均數(shù)的特點(diǎn)及其應(yīng)用場合
1、眾數(shù)是一組數(shù)據(jù)分布的峰值,是一種位置代表值。其優(yōu)點(diǎn)是易于理解,不受極端值的影響。當(dāng)數(shù)據(jù)的分布具有明顯的集中趨勢時(shí),尤其是對于偏態(tài)分布,眾數(shù)的代表性比均值要好。其缺點(diǎn)是具有不唯一性。
2、中位數(shù)是一組數(shù)據(jù)中間位置上的代表值,其特點(diǎn)是不受數(shù)據(jù)極端值的影響。對于具有偏態(tài)分布的數(shù)據(jù),中位數(shù)的代表性要比均值好。
3、均值是用全部數(shù)據(jù)計(jì)算的,其主要缺點(diǎn)是易受數(shù)據(jù)極端值的影響,對于偏態(tài)分布的數(shù)據(jù),均值的代表性較差。眾數(shù)、中位數(shù)、均值的特點(diǎn)和應(yīng)用眾數(shù)不受極端值影響具有不惟一性數(shù)據(jù)分布偏斜程度較大時(shí)應(yīng)用中位數(shù)不受極端值影響數(shù)據(jù)分布偏斜程度較大時(shí)應(yīng)用均值易受極端值影響數(shù)學(xué)性質(zhì)優(yōu)良數(shù)據(jù)對稱分布或接近對稱分布時(shí)應(yīng)用習(xí)題:同一數(shù)列中,算術(shù)平均數(shù)小于中位數(shù),則數(shù)列呈右偏分布。()
2.6分布離散程度的測度2.6.1極差2.6.2內(nèi)距2.6.3平均差2.6.4方差和標(biāo)準(zhǔn)差2.6.5離散系數(shù)2.6.1極差(range)1.一組數(shù)據(jù)的最大值與最小值之差2.離散程度的最簡單測度值3.易受極端值影響4.未考慮數(shù)據(jù)的分布7891078910未分組數(shù)據(jù)R
=max(Xi)-min(Xi).=組距分組數(shù)據(jù)R
=最高組上限-最低組下限5.計(jì)算公式為2.6.2內(nèi)距(inter-quartilerange,IQR)也稱為內(nèi)距或四分間距上四分位數(shù)與下四分位數(shù)之差QD=QU-QL反映了中間50%數(shù)據(jù)的離散程度用于衡量中位數(shù)的代表性值越小,說明中間的數(shù)據(jù)越集中;2.6.3平均差各變量值與其均值離差絕對值的平均數(shù)能全面反映一組數(shù)據(jù)的離散程度數(shù)學(xué)性質(zhì)較差,實(shí)際中應(yīng)用較少(絕對值難處理)計(jì)算公式為未分組數(shù)據(jù)組距分組數(shù)據(jù)2.6.4方差和標(biāo)準(zhǔn)差1、最常用的離散程度的測度值2、反映了數(shù)據(jù)的分布3、方差是各變量值與其均值離差的平方的平均數(shù)4、根據(jù)總體數(shù)據(jù)計(jì)算的,稱為總體方差或標(biāo)準(zhǔn)差;根據(jù)樣本數(shù)據(jù)計(jì)算的,稱為樣本方差或標(biāo)準(zhǔn)差總體的方差和標(biāo)準(zhǔn)差未分組數(shù)據(jù):組距分組數(shù)據(jù):未分組數(shù)據(jù):組距分組數(shù)據(jù):方差的計(jì)算公式標(biāo)準(zhǔn)差的計(jì)算公式舉例:方差和標(biāo)準(zhǔn)差的計(jì)算表2-7某車間50名工人日加工零件標(biāo)準(zhǔn)差計(jì)算表按零件數(shù)分組組中值(Xi)頻數(shù)(Fi)(Xi-X)2(Xi-X)2Fi105~110110~115115~120120~125125~130130~135135~140107.5112.5117.5122.5127.5132.5137.5358141064246.49114.4932.490.4918.4986.49204.49739.47572.45259.926.86184.90518.94817.96合計(jì)—50—3100.5【例】根據(jù)50名工人日加工零件個(gè)數(shù)的數(shù)據(jù),計(jì)算工人日加工零件數(shù)的標(biāo)準(zhǔn)差樣本的方差和標(biāo)準(zhǔn)差未分組數(shù)據(jù):組距分組數(shù)據(jù):未分組數(shù)據(jù):組距分組數(shù)據(jù):方差的計(jì)算公式標(biāo)準(zhǔn)差的計(jì)算公式注意:樣本方差用自由度n-1去除!自由度(degreeoffreedom)自由度是一組數(shù)據(jù)中可以自由取值的數(shù)據(jù)的個(gè)數(shù)當(dāng)樣本數(shù)據(jù)的個(gè)數(shù)為n
時(shí),若樣本均值x確定后,只有n-1個(gè)數(shù)據(jù)可以自由取值,其中必有一個(gè)數(shù)據(jù)不能自由取值例如:樣本有3個(gè)數(shù)值,即x1=2,x2=4,x3=9,則x=5。當(dāng)x=5確定后,x1,x2和x3有兩個(gè)數(shù)據(jù)可以自由取值,另一個(gè)則不能自由取值,比如x1=6,x2=7,那么x3則必然取2,而不能取其他值樣本方差用自由度去除,其原因可從多方面來解釋,從實(shí)際應(yīng)用角度看,在抽樣估計(jì)中,當(dāng)用樣本方差去估計(jì)總體方差σ2時(shí),它是σ2的無偏估計(jì)量舉例:樣本方差的計(jì)算原始數(shù)據(jù):10 591368樣本標(biāo)準(zhǔn)差(例題分析)表2-8:某電腦公司銷售量數(shù)據(jù)平均差計(jì)算表按銷售量分組組中值(Mi)頻數(shù)(fi)140—150150—160160—170170—180180—190190—200200—210210—220220—230230—24014515516517518519520521522523549162720171084540302010010203040501602703202700170200240160250合計(jì)—120—55400樣本標(biāo)準(zhǔn)差含義:每一天的銷售量與平均數(shù)相比,平均相差21.58臺習(xí)題1:某企業(yè)工人日產(chǎn)量資料如下:按日產(chǎn)量分組(千克)工人數(shù)(人)60以下1060~701970~805080~903690~10027100~11014110~1208合計(jì)164fx1055-27.6761.767617.61965-17.6309.765885.445075-7.657.76288836852.45.76207.36279512.4153.764151.521410522.4501.767024.64811532.41049.768398.0816436172.64方差
(簡化計(jì)算公式)樣本方差總體方差2.6.5離散系數(shù)(coefficientofvariation)標(biāo)準(zhǔn)差與其相應(yīng)的均值之比對數(shù)據(jù)相對離散程度的測度消除了數(shù)據(jù)水平高低和計(jì)量單位的影響用于對不同組別數(shù)據(jù)離散程度的比較計(jì)算公式為離散系數(shù)(例題分析)表2-9:某管理局所屬8家企業(yè)的產(chǎn)品銷售數(shù)據(jù)企業(yè)編號產(chǎn)品銷售額(萬元)x1銷售利潤(萬元)x21234567817022039043048065095010008.112.518.022.026.540.064.069.0【例】某管理局抽查了所屬的8家企業(yè),其產(chǎn)品銷售數(shù)據(jù)如表。試比較產(chǎn)品銷售額與銷售利潤的離散程度離散系數(shù)(例題分析)結(jié)論:計(jì)算結(jié)果表明,v1<v2,說明產(chǎn)品銷售額的離散程度小于銷售利潤的離散程度v1=536.25309.19=0.577v2=32.521523.09=0.710習(xí)題1:
設(shè)總體某數(shù)量標(biāo)志值的平均數(shù)等于26,標(biāo)準(zhǔn)差系數(shù)為0.3,求方差。解:習(xí)題2:
設(shè)已知總體某數(shù)量標(biāo)志值的平均數(shù)等于15,而標(biāo)志值平方的平均數(shù)等于250,計(jì)算標(biāo)準(zhǔn)差系數(shù)。解:
習(xí)題3:有兩個(gè)數(shù)列,若甲的標(biāo)準(zhǔn)差比乙的標(biāo)準(zhǔn)差大,則兩者平均數(shù)的代表性程度:()
A、甲>乙B、甲<乙C、甲=乙D、無法判斷
習(xí)題4:
標(biāo)志變異指標(biāo)越大,說明平均數(shù)的代表性越大。()交替標(biāo)志的算術(shù)平均數(shù)和標(biāo)準(zhǔn)差1、什么叫交替標(biāo)志交替標(biāo)志是指這類標(biāo)志,用它可以將總體數(shù)據(jù)簡單地劃分為兩部分或兩組。一般用1表示具備某種標(biāo)志,用0表示不具備某種標(biāo)志。設(shè)總體共有N個(gè)數(shù)據(jù),其中具備某種標(biāo)志的總體單位數(shù)為,不具備某種標(biāo)志的總體單位數(shù)為。記交替標(biāo)志x比重1p1-p0q0-p合計(jì)1--某商店某月對一批庫存的茶葉進(jìn)行質(zhì)量檢驗(yàn),其結(jié)果是:庫存茶葉3000公斤,其中合格的茶葉2700公斤,其余均為不合格有異味的茶葉,試求茶葉合格品的算術(shù)平均數(shù)和標(biāo)準(zhǔn)差。
某市場調(diào)查機(jī)構(gòu)對某種化妝品在城市和農(nóng)村的消費(fèi)者中分別進(jìn)行調(diào)查,在城市中調(diào)查200人,有128人表示喜歡,在農(nóng)村調(diào)查225人,有90人表示喜歡。試求表示喜歡人數(shù)的平均數(shù)和標(biāo)準(zhǔn)差。農(nóng)村:城市:
綜合:二、偏度利用眾數(shù)、中位數(shù)和平均數(shù)之間的關(guān)系就可以判斷分布是對稱、左偏還是右偏,但要測度偏斜的程度則需要計(jì)算偏態(tài)系數(shù)。統(tǒng)計(jì)分析中測定偏態(tài)系數(shù)的方法很多,一般采用矩的概念計(jì)算,其計(jì)算公式為三階中心矩與標(biāo)準(zhǔn)差的三次方之比。具體公式如下:
【例】某管理局所屬30個(gè)企業(yè)2005年3月份利潤額統(tǒng)計(jì)資料如表4.9所示,要求計(jì)算該變量數(shù)列的偏斜狀況。【解】利用表中有關(guān)數(shù)據(jù)計(jì)算標(biāo)準(zhǔn)差如下:利潤額(萬元)企業(yè)數(shù)f組中值x10—3030—5050—7070—9021013520406080231219604683380-78608-274402808878802672672384160168482284880合計(jì)30—8120—153605358560萬元三、峰度測度峰度的方法,一般采用矩的概念計(jì)算,即運(yùn)用四階中心矩與標(biāo)準(zhǔn)差的四次方對比,以此來判斷各分布曲線峰度的尖平程度。公式如下:
【例4.17】繼續(xù)上例,要求計(jì)算該變量數(shù)列的峰度?!窘狻坷麧欘~(萬元)企業(yè)數(shù)f組中值x10—3030—5050—7070—9021013520406080231219604683380-78608-274402808878802672672384160168482284880合計(jì)30—8120—153605358560由Excel輸出的描述統(tǒng)計(jì)量
步驟:工具——數(shù)據(jù)分析——描述統(tǒng)計(jì)2.8莖葉圖與箱線圖一、莖葉圖二、箱線圖2.8.1莖葉圖
(stem-and-leafdisplay)用于顯示未分組的原始數(shù)據(jù)的分布由“莖”和“葉”兩部分構(gòu)成,其圖形是由數(shù)字組成的以該組數(shù)據(jù)的高位數(shù)值作樹莖,低位數(shù)字作樹葉樹葉上只保留一位數(shù)字莖葉圖類似于橫置的直方圖,但又有區(qū)別直方圖可觀察一組數(shù)據(jù)的分布狀況,但沒有給出具體的數(shù)值莖葉圖既能給出數(shù)據(jù)的分布狀況,又能給出每一個(gè)原始數(shù)值,保留了原始數(shù)據(jù)的信息莖葉圖
(Bp22表2.7工人周加工零件數(shù))莖葉圖
(*表示0~4,.表示5~9,擴(kuò)展的莖葉圖)2.8.2箱線圖(boxplot)用于顯示未分組的原始數(shù)據(jù)的分布箱線圖由一組數(shù)據(jù)的5個(gè)特征值繪制而成,它由一個(gè)箱子和兩條線段組成箱線圖的繪制方法首先找出一組數(shù)據(jù)的5個(gè)特征值,即最大值、最小值、中位數(shù)Me和兩個(gè)四分位數(shù)(下四分位數(shù)QL和上四分位數(shù)QU)連接兩個(gè)四分(位)數(shù)畫出箱子,再將兩個(gè)極值點(diǎn)與箱子相連接
箱線圖
(箱線圖的構(gòu)成)中位數(shù)4681012QUQLX最大值X最小值簡單箱線圖箱線圖
(例題分析)最小值84最大值128中位數(shù)1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit1 Here's a red hat(教學(xué)設(shè)計(jì))-2023-2024學(xué)年外研版(三起)英語三年級下冊
- 吉林職業(yè)技術(shù)學(xué)院《文字學(xué)與漢字教育》2023-2024學(xué)年第二學(xué)期期末試卷
- 昆明理工大學(xué)津橋?qū)W院《過程控制系統(tǒng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 陜西中醫(yī)藥大學(xué)《室內(nèi)設(shè)計(jì)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 華中農(nóng)業(yè)大學(xué)《公司金融》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南吉利汽車職業(yè)技術(shù)學(xué)院《土木工程施工與概預(yù)算原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東云浮中醫(yī)藥職業(yè)學(xué)院《園藝生態(tài)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 長春建筑學(xué)院《中學(xué)語文微型課訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 東南大學(xué)成賢學(xué)院《果樹栽培學(xué)各論》2023-2024學(xué)年第二學(xué)期期末試卷
- 扎蘭屯職業(yè)學(xué)院《高等化工熱力學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 網(wǎng)絡(luò)營銷講義網(wǎng)絡(luò)營銷產(chǎn)品策略課件
- 《小型混凝土預(yù)制件標(biāo)準(zhǔn)化生產(chǎn)管理辦法》
- 六年級上冊英語教案-Culture 2 Going Green 第二課時(shí) 廣東開心英語
- 警察叔叔是怎樣破案的演示文稿課件
- 青年教師個(gè)人成長檔案
- 2021譯林版高中英語選擇性必修三課文翻譯
- 2022年華中科技大學(xué)博士研究生英語入學(xué)考試真題
- 《網(wǎng)店運(yùn)營與管理》整本書電子教案全套教學(xué)教案
- 打印版 《固體物理教程》課后答案王矜奉
- 中考《紅星照耀中國》各篇章練習(xí)題及答案(1-12)
- Q∕GDW 11612.43-2018 低壓電力線高速載波通信互聯(lián)互通技術(shù)規(guī)范 第4-3部分:應(yīng)用層通信協(xié)議
評論
0/150
提交評論