版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.tan45°的值等于()A. B. C. D.12.已知一組數(shù)據(jù):12,5,9,5,14,下列說(shuō)法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是53.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關(guān)系是()A.相交 B.相切 C.相離 D.不能確定4.已知正方形MNOK和正六邊形ABCDEF邊長(zhǎng)均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過(guò)程中,點(diǎn)B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.45.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.6.氣象臺(tái)預(yù)報(bào)“本市明天下雨的概率是85%”,對(duì)此信息,下列說(shuō)法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時(shí)間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨7.下列因式分解正確的是()A. B.C. D.8.cos30°=()A. B. C. D.9.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.10.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為4的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D′處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為()A.(,2) B.(4,1) C.(4,) D.(4,)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點(diǎn),連接EF,使四邊形ABFE為正方形,若點(diǎn)G是AD上的動(dòng)點(diǎn),連接FG,將矩形沿FG折疊使得點(diǎn)C落在正方形ABFE的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為P,則線段AP的長(zhǎng)為______.12.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.13.如圖,⊙O的半徑為6,四邊形ABCD內(nèi)接于⊙O,連接OB,OD,若∠BOD=∠BCD,則弧BD的長(zhǎng)為________.14.已知關(guān)于X的一元二次方程有實(shí)數(shù)根,則m的取值范圍是____________________15.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點(diǎn),若CD=3cm,則EF=________cm.16.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點(diǎn)P(a,2),則關(guān)于x的不等式x+1≥mx+n的解集為__________.17.某商場(chǎng)對(duì)今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進(jìn)行了統(tǒng)計(jì),繪制了如圖1和圖2所示的統(tǒng)計(jì)圖,則B品牌粽子在圖2中所對(duì)應(yīng)的扇形的心角的度數(shù)是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進(jìn)行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是;(2)若任意抽出一張不放回,然后再?gòu)挠嘞碌某槌鲆粡垼?qǐng)用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對(duì)稱圖形的概率.19.(5分)如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.20.(8分)某射擊隊(duì)教練為了了解隊(duì)員訓(xùn)練情況,從隊(duì)員中選取甲、乙兩名隊(duì)員進(jìn)行射擊測(cè)試,相同條件下各射靶5次,成績(jī)統(tǒng)計(jì)如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過(guò)計(jì)算說(shuō)明甲、乙兩人的成績(jī)誰(shuí)比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績(jī)的方差會(huì)變小.(填“變大”、“變小”或“不變”)21.(10分)如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.22.(10分)東東玩具商店用500元購(gòu)進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購(gòu)進(jìn)第二批這種悠悠球,所購(gòu)數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.求第一批悠悠球每套的進(jìn)價(jià)是多少元;如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套悠悠球的售價(jià)至少是多少元?23.(12分)填空并解答:某單位開設(shè)了一個(gè)窗口辦理業(yè)務(wù),并按顧客“先到達(dá),先辦理”的方式服務(wù),該窗口每2分鐘服務(wù)一位顧客.已知早上8:00上班窗口開始工作時(shí),已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達(dá),且以后每5分鐘就有一位“新顧客”到達(dá).該單位上午8:00上班,中午11:30下班.(1)問(wèn)哪一位“新顧客”是第一個(gè)不需要排隊(duì)的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時(shí)刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達(dá)窗口時(shí)刻000000161116…服務(wù)開始時(shí)刻024681012141618…每人服務(wù)時(shí)長(zhǎng)2222222222…服務(wù)結(jié)束時(shí)刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個(gè)不需要排隊(duì)的.(2)若其他條件不變,若窗口每a分鐘辦理一個(gè)客戶(a為正整數(shù)),則當(dāng)a最小取什么值時(shí),窗口排隊(duì)現(xiàn)象不可能消失.分析:第n個(gè)“新顧客”到達(dá)窗口時(shí)刻為,第(n﹣1)個(gè)“新顧客”服務(wù)結(jié)束的時(shí)刻為.24.(14分)計(jì)算:.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點(diǎn)睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.2、D【解析】分別計(jì)算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項(xiàng)A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項(xiàng)B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項(xiàng)C正確;極差為:14﹣5=9,故選項(xiàng)D錯(cuò)誤.故選D3、A【解析】試題分析:根據(jù)圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關(guān)系是相交.故選A.考點(diǎn):直線與圓的位置關(guān)系.4、D【解析】
如圖,點(diǎn)O的運(yùn)動(dòng)軌跡是圖在黃線,點(diǎn)B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點(diǎn)O的運(yùn)動(dòng)軌跡是圖在黃線,作CH⊥BD于點(diǎn)H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點(diǎn)B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點(diǎn)B,O間的距離不可能是3.4,故選:D.【點(diǎn)睛】本題考查正多邊形與圓、旋轉(zhuǎn)變換等知識(shí),解題的關(guān)鍵是正確作出點(diǎn)O的運(yùn)動(dòng)軌跡,求出點(diǎn)B,O間的距離的最小值以及最大值是解答本題的關(guān)鍵.5、A【解析】
根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對(duì)邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練的掌握銳角三角函數(shù)的定義.6、C【解析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯(cuò)誤;B、本市明天將有85%的時(shí)間降水,錯(cuò)誤;C、明天降水的可能性為90%,說(shuō)明明天降水的可能性比較大,正確;D、明天肯定下雨,錯(cuò)誤.故選C.考點(diǎn):概率的意義.7、C【解析】
依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項(xiàng)中,多項(xiàng)式x2-x+2在實(shí)數(shù)范圍內(nèi)不能因式分解;
選項(xiàng)B,A中的等式不成立;
選項(xiàng)C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.
故選C.【點(diǎn)睛】本題考查因式分解,解決問(wèn)題的關(guān)鍵是掌握提公因式法和公式法的方法.8、C【解析】
直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點(diǎn)睛】考點(diǎn):特殊角的銳角三角函數(shù)點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.9、A【解析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個(gè),∴主視圖不可能是.故選A.10、D【解析】
由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故選:D.【點(diǎn)睛】本題考查正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識(shí)別圖形是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1或1﹣2【解析】
當(dāng)點(diǎn)P在AF上時(shí),由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對(duì)角線AF的長(zhǎng),從而可得到PA的長(zhǎng);當(dāng)點(diǎn)P在BE上時(shí),由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長(zhǎng)為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點(diǎn)睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.12、.【解析】
利用規(guī)定的運(yùn)算方法,分別算得a1,a2,a3,a4…找出運(yùn)算結(jié)果的循環(huán)規(guī)律,利用規(guī)律解決問(wèn)題.【詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個(gè)數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【點(diǎn)睛】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關(guān)鍵在于掌握運(yùn)算法則找到規(guī)律.13、4π【解析】
根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ)可得∠BCD+∠A=180°,再根據(jù)同弧所對(duì)的圓周角與圓心角的關(guān)系以及∠BOD=∠BCD,可求得∠A=60°,從而得∠BOD=120°,再利用弧長(zhǎng)公式進(jìn)行計(jì)算即可得.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的長(zhǎng)=,故答案為4π.【點(diǎn)睛】本題考查了圓周角定理、弧長(zhǎng)公式等,求得∠A的度數(shù)是解題的關(guān)鍵.14、m≤3且m≠2【解析】試題解析:∵一元二次方程有實(shí)數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.15、3【解析】試題分析:根據(jù)點(diǎn)D為AB的中點(diǎn)可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點(diǎn)可得:EF為△ABC的中位線,根據(jù)中位線的性質(zhì)可得:EF=AB=3.考點(diǎn):(1)、直角三角形的性質(zhì);(2)、中位線的性質(zhì)16、x≥1【解析】
把y=2代入y=x+1,得x=1,∴點(diǎn)P的坐標(biāo)為(1,2),根據(jù)圖象可以知道當(dāng)x≥1時(shí),y=x+1的函數(shù)值不小于y=mx+n相應(yīng)的函數(shù)值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點(diǎn)睛】本題考查了一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用.解決此類問(wèn)題關(guān)鍵是仔細(xì)觀察圖形,注意幾個(gè)關(guān)鍵點(diǎn)(交點(diǎn)、原點(diǎn)等),做到數(shù)形結(jié)合.17、120°【解析】
根據(jù)圖1中C品牌粽子1200個(gè),在圖2中占50%,求出三種品牌粽子的總個(gè)數(shù),再求出B品牌粽子的個(gè)數(shù),從而計(jì)算出B品牌粽子占粽子總數(shù)的比例,從而求出B品牌粽子在圖2中所對(duì)應(yīng)的圓心角的度數(shù).【詳解】解:∵三種品牌的粽子總數(shù)為1200÷50%=2400個(gè),又∵A、C品牌的粽子分別有400個(gè)、1200個(gè),∴B品牌的粽子有2400-400-1200=800個(gè),則B品牌粽子在圖2中所對(duì)應(yīng)的圓心角的度數(shù)為360×.故答案為120°.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?、解答題(共7小題,滿分69分)18、(1);(2).【解析】
(1)既是中心對(duì)稱圖形又是軸對(duì)稱圖形只有圓一個(gè)圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對(duì)稱圖形又是軸對(duì)稱圖形,∴抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對(duì)稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對(duì)稱圖形).【點(diǎn)睛】本題考查了列表法和樹狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)見解析;(1)4【解析】
(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長(zhǎng)度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進(jìn)行解答.【詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點(diǎn)D是AC的中點(diǎn),∴CD=BD=AC,∴平行四邊形DBEC是菱形;(1)∵點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),AD=3,DF=1,∴DF是△ABC的中位線,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四邊形DBEC是菱形,∴S四邊形DBEC=1S△BCD=S△ABC=AB?BC=×4×1=4.點(diǎn)睛:本題考查了菱形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,三角形中位線定理.由點(diǎn)D是AC的中點(diǎn),得到CD=BD是解答(1)的關(guān)鍵,由菱形的性質(zhì)和三角形的面積公式得到S四邊形DBEC=S△ABC是解(1)的關(guān)鍵.20、(1)8,6和9;(2)甲的成績(jī)比較穩(wěn)定;(3)變小【解析】
(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;
(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進(jìn)行比較,即可得出答案;
(3)根據(jù)方差公式進(jìn)行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;
在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;
故答案為8,6和9;
(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,
則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均數(shù)是:(6+6+9+9+10)÷5=8,
則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成績(jī)比較穩(wěn)定;
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績(jī)的方差變?。?/p>
故答案為變?。军c(diǎn)睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來(lái)表示,計(jì)算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術(shù)平均數(shù)、中位數(shù)和眾數(shù).21、這棟高樓的高度是【解析】
過(guò)A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點(diǎn)睛】本題主要考查了解直角三角形的應(yīng)用-仰角俯角問(wèn)題,難度適中.對(duì)于一般三角形的計(jì)算,常用的方法是利用作高線轉(zhuǎn)化為直角三角形的計(jì)算.22、(1)第一批悠悠球每套的進(jìn)價(jià)是25元;(2)每套悠悠球的售價(jià)至少是1元.【解析】分析:(1)設(shè)第一批悠悠球每套的進(jìn)價(jià)是x元,則第二批悠悠球每套的進(jìn)價(jià)是(x+5)元,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合第二批購(gòu)進(jìn)數(shù)量是第一批數(shù)量的1.5倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;(2)設(shè)每套悠悠球的售價(jià)為y元,根據(jù)銷售收入-成本=利潤(rùn)結(jié)合全部售完后總利潤(rùn)不低于25%,即可得出關(guān)于y的一元一次不等式,解之取其中的最小值即可得出結(jié)論.詳解:(1)設(shè)第一批悠悠球每套的進(jìn)價(jià)是x元,則第二批悠悠球每套的進(jìn)價(jià)是(x+5)元,根據(jù)題意得:,解得:x=25,經(jīng)檢驗(yàn),x=25是原分式方程的解.答:第一批悠悠球每套的進(jìn)價(jià)是25元.(2)設(shè)每套悠悠球的售價(jià)為y元,根據(jù)題意得:500÷25×(1+1.5)y-500-90
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 門診部醫(yī)生的工作總結(jié)
- 2024年蘇教版九年級(jí)語(yǔ)文上冊(cè)教學(xué)工作總結(jié)(共16篇)
- 2024年稅務(wù)師題庫(kù)(原創(chuàng)題)
- 《期貨市場(chǎng)投資分析》課件
- 2024年規(guī)章制度會(huì)議記錄(16篇)
- 【人教版九上歷史】知識(shí)清單
- 2025關(guān)于房地產(chǎn)銷售代理合同模板
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師綜合練習(xí)試卷A卷附答案
- 礦山機(jī)械智能制造項(xiàng)目可行性研究報(bào)告
- 2024年度四川省公共營(yíng)養(yǎng)師之四級(jí)營(yíng)養(yǎng)師模擬考試試卷A卷含答案
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級(jí)上學(xué)期期末物理試卷
- 統(tǒng)編版語(yǔ)文四年級(jí)上冊(cè)《期末作文專項(xiàng)復(fù)習(xí)》 課件
- 2024年黑龍江省機(jī)場(chǎng)集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 食品從業(yè)人員安全學(xué)習(xí)培訓(xùn)記錄
- 內(nèi)科季度護(hù)理質(zhì)量分析課件
- 2024年安全生產(chǎn)月活動(dòng)安全知識(shí)競(jìng)賽題庫(kù)含答案
- 銷售回款專項(xiàng)激勵(lì)政策方案(地產(chǎn)公司)
- 孕產(chǎn)婦健康管理服務(wù)規(guī)范課件
- 生物系統(tǒng)建模與仿真課件
- 風(fēng)電項(xiàng)目核準(zhǔn)及開工行政審批流程(備案核準(zhǔn)、施工許可)
- ××市××學(xué)校鞏固中等職業(yè)教育基礎(chǔ)地位專項(xiàng)行動(dòng)實(shí)施方案參考提綱
評(píng)論
0/150
提交評(píng)論