2022-2023學年廣東省順德區(qū)七校聯(lián)考中考數(shù)學全真模擬試卷含解析_第1頁
2022-2023學年廣東省順德區(qū)七校聯(lián)考中考數(shù)學全真模擬試卷含解析_第2頁
2022-2023學年廣東省順德區(qū)七校聯(lián)考中考數(shù)學全真模擬試卷含解析_第3頁
2022-2023學年廣東省順德區(qū)七校聯(lián)考中考數(shù)學全真模擬試卷含解析_第4頁
2022-2023學年廣東省順德區(qū)七校聯(lián)考中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱2.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣13.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.4.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°5.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據用科學記數(shù)法表示為()A. B. C. D..6.某品牌的飲水機接通電源就進入自動程序:開機加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系,直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘7.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π8.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.69.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元10.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋12.對于任意不相等的兩個實數(shù),定義運算※如下:※=,如3※2==.那么8※4=.13.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.14.一機器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機器人從開始到停止所需時間為__s.15.若關于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當m=1、2、3、…、2018時,相應的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.16.因式分解:=_______________.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.18.(8分)甲、乙兩家商場以同樣價格出售相同的商品,在同一促銷期間兩家商場都讓利酬賓,讓利方式如下:甲商場所有商品都按原價的8.5折出售,乙商場只對一次購物中超過200元后的價格部分按原價的7.5折出售.某顧客打算在促銷期間到這兩家商場中的一家去購物,設該顧客在一次購物中的購物金額的原價為x(x>0)元,讓利后的購物金額為y元.(1)分別就甲、乙兩家商場寫出y關于x的函數(shù)解析式;(2)該顧客應如何選擇這兩家商場去購物會更省錢?并說明理由.19.(8分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.20.(8分)中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:成績x/分頻數(shù)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25請根據所給信息,解答下列問題:m=,n=;請補全頻數(shù)分布直方圖;若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?21.(8分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.22.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.23.(12分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點坐標和對稱軸.24.某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優(yōu)秀、良好、及格、不及格四個等級,統(tǒng)計員在將測試數(shù)據繪制成圖表時發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如圖圖表,請按正確數(shù)據解答下列各題:學生體能測試成績各等次人數(shù)統(tǒng)計表體能等級調整前人數(shù)調整后人數(shù)優(yōu)秀8良好16及格12不及格4合計40(1)填寫統(tǒng)計表;(2)根據調整后數(shù)據,補全條形統(tǒng)計圖;(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數(shù)學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.2、D【解析】分析:根據合并同類項法則,同底數(shù)冪相除,積的乘方的性質,同底數(shù)冪相乘的性質,逐一判斷即可.詳解:根據合并同類項法則,可知x3+x3=2x3,故不正確;根據同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關運算,是一道綜合性題目,熟練應用整式的相關性質和運算法則是解題關鍵.3、A【解析】根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.4、B【解析】分析:根據平行線的性質和三角形的外角性質解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質,關鍵是根據平行線的性質和三角形的外角性質解答.5、C【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.6、C【解析】

先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設反比例函數(shù)關系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點睛】本題考查反比例函數(shù)的應用,利用數(shù)形結合思想解題是關鍵.7、A【解析】

利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.8、D【解析】分析:連接OB,根據等腰三角形三線合一的性質可得BO⊥EF,再根據矩形的性質可得OA=OB,根據等邊對等角的性質可得∠BAC=∠ABO,再根據三角形的內角和定理列式求出∠ABO=30°,即∠BAC=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質,全等三角形的判定與性質,等腰三角形三線合一的性質,直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關鍵.9、C【解析】

根據題意求出長方形廣告牌每平方米的成本,根據相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.10、B【解析】

根據負數(shù)的定義判斷即可【詳解】解:根據負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.12、【解析】

根據新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.13、1【解析】

∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.14、240【解析】根據圖示,得出機器人的行走路線是沿著一個正八邊形的邊長行走一周,是解決本題的關鍵,考察了計算多邊形的周長,本題中由于機器人最后必須回到起點,可知此機器人一共轉了360°,我們可以計算機器人所轉的回數(shù),即360°÷45°=8,則機器人的行走路線是沿著一個正八邊形的邊長行走一周,故機器人一共行走6×8=48m,根據時間=路程÷速度,即可得出結果.本題解析:依據題中的圖形,可知機器人一共轉了360°,∵360°÷45°=8,∴機器人一共行走6×8=48m.∴該機器人從開始到停止所需時間為48÷0.2=240s.15、.【解析】

利用根與系數(shù)的關系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.16、a(a+b)(a-b).【解析】分析:本題考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案為a(a+b)(a-b).三、解答題(共8題,共72分)17、-5【解析】

根據分式的運算法則以及實數(shù)的運算法則即可求出答案.【詳解】當x=sin30°+2﹣1+時,∴x=++2=3,原式=÷==﹣5.【點睛】本題考查分式的運算法則,解題的關鍵是熟練運用分式的運算法則,本題屬于基礎題型.18、(1)y1=0.85x,y2=0.75x+50(x>200),y2=x(0≤x≤200);(2)x>500時,到乙商場購物會更省錢,x=500時,到兩家商場去購物花費一樣,當x<500時,到甲商場購物會更省錢.【解析】

(1)根據單價乘以數(shù)量,可得函數(shù)解析式;(2)分類討論,根據消費的多少,可得不等式,根據解不等式,可得答案.【詳解】(1)甲商場寫出y關于x的函數(shù)解析式y(tǒng)1=0.85x,乙商場寫出y關于x的函數(shù)解析式y(tǒng)2=200+(x﹣200)×0.75=0.75x+50(x>200),即y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,解得x>500,即當x>500時,到乙商場購物會更省錢;由y1=y2得0.85x=0.75x+50,即x=500時,到兩家商場去購物花費一樣;由y1<y2,得0.85x<0.75x+500,解得x<500,即當x<500時,到甲商場購物會更省錢;綜上所述:x>500時,到乙商場購物會更省錢,x=500時,到兩家商場去購物花費一樣,當x<500時,到甲商場購物會更省錢.【點睛】本題考查了一次函數(shù)的應用,分類討論是解題關鍵.19、(1)見解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.20、(1)70,0.2(2)70(3)750【解析】

(1)根據題意和統(tǒng)計表中的數(shù)據可以求得m、n的值;(2)根據(1)中求得的m的值,從而可以將條形統(tǒng)計圖補充完整;(3)根據統(tǒng)計表中的數(shù)據可以估計該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人.【詳解】解:(1)由題意可得,m=200×0.35=70,n=40÷200=0.2,故答案為70,0.2;(2)由(1)知,m=70,補全的頻數(shù)分布直方圖,如下圖所示;(3)由題意可得,該校參加這次比賽的3000名學生中成績“優(yōu)”等約有:3000×0.25=750(人),答:該校參加這次比賽的3000名學生中成績“優(yōu)”等約有750人.【點睛】本題考查頻數(shù)分布直方圖、頻數(shù)分布表、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.21、證明見解析.【解析】

根據在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.22、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解析】試題分析:(1)由點A與點B關于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結論;(3)假設存

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論