版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.2.如圖,半徑為3的⊙A經(jīng)過原點O和點C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上一點,則tan∠OBC為()A. B.2 C. D.3.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.4.3的倒數(shù)是()A. B. C. D.5.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F(xiàn),則DE的長是()A. B. C.1 D.6.已知,代數(shù)式的值為()A.-11 B.-1 C.1 D.117.若,則()A. B. C. D.8.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處9.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.1610.下列幾何體中,主視圖和俯視圖都為矩形的是(
)A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系內(nèi),一次函數(shù)與的圖像之間的距離為3,則b的值為__________.12.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.13.已知圓錐的底面半徑為,母線長為,則它的側(cè)面展開圖的面積等于__________.14.欣欣超市為促銷,決定對A,B兩種商品統(tǒng)一進行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.15.如圖,在中,,,,,,點在上,交于點,交于點,當時,________.16.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤三、解答題(共8題,共72分)17.(8分)在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側(cè)).(1)當拋物線過原點時,求實數(shù)a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數(shù)式表示);(3)當AB≤4時,求實數(shù)a的取值范圍.18.(8分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結(jié)AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結(jié)AD(1)求證:△ABC≌△AOD.(2)設(shè)△ACD的面積為s,求s關(guān)于m的函數(shù)關(guān)系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.19.(8分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).20.(8分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個交點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求直線AB與x軸的交點C的坐標及△AOB的面積;(3)求方程的解集(請直接寫出答案).21.(8分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.22.(10分)閱讀材料:對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.(I)旋轉(zhuǎn)中心是點,旋轉(zhuǎn)了(度);(II)當點E從點D向點C移動時,連結(jié)AF,設(shè)AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.23.(12分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當?shù)拇笮M足什么條件時,四邊形是菱形?請回答并證明你的結(jié)論.24.如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設(shè)點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
易證△DEF∽△DAB,△BEF∽△BCD,根據(jù)相似三角形的性質(zhì)可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質(zhì)定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.2、C【解析】試題分析:連結(jié)CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數(shù)的定義.3、C【解析】
設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【詳解】解:設(shè)大馬有x匹,小馬有y匹,由題意得:,故選C.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.4、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).5、D【解析】
過F作FH⊥AE于H,根據(jù)矩形的性質(zhì)得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到AF=CE,根據(jù)相似三角形的性質(zhì)得到,于是得到AE=AF,列方程即可得到結(jié)論.【詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【點睛】本題主要考查平行四邊形的性質(zhì)及三角形相似,做合適的輔助線是解本題的關(guān)鍵.6、D【解析】
根據(jù)整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關(guān)鍵在于利用整式的運算法則進行化簡求得代數(shù)式的值7、D【解析】
等式左邊為非負數(shù),說明右邊,由此可得b的取值范圍.【詳解】解:,
,解得故選D.【點睛】本題考查了二次根式的性質(zhì):,.8、D【解析】
到三條相互交叉的公路距離相等的地點應(yīng)是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.9、D【解析】試題分析:設(shè)AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應(yīng)用;2.切線的性質(zhì).10、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解析】
設(shè)直線y=2x-1與x軸交點為C,與y軸交點為A,過點A作AD⊥直線y=2x-b于點D,根據(jù)直線的解析式找出點A、B、C的坐標,通過同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直線AB的長度,從而得出關(guān)于b的含絕對值符號的方程,解方程即可得出結(jié)論.【詳解】解:設(shè)直線y=2x-1與x軸交點為C,與y軸交點為A,過點A作AD⊥直線y=2x-b于點D,如圖所示.
∵直線y=2x-1與x軸交點為C,與y軸交點為A,
∴點A(0,-1),點C(,0),
∴OA=1,OC=,AC==,
∴cos∠ACO==.
∵∠BAD與∠CAO互余,∠ACO與∠CAO互余,
∴∠BAD=∠ACO.
∵AD=3,cos∠BAD==,
∴AB=3.
∵直線y=2x-b與y軸的交點為B(0,-b),
∴AB=|-b-(-1)|=3,
解得:b=1-3或b=1+3.
故答案為1+3或1-3.【點睛】本題考查兩條直線相交與平行的問題,利用平行線間的距離轉(zhuǎn)化成點到直線的距離得出關(guān)于b的方程是解題關(guān)鍵.12、540°【解析】
根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和13、【解析】解:它的側(cè)面展開圖的面積=?1π?4×6=14π(cm1).故答案為14πcm1.點睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.14、1【解析】
設(shè)A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意列出x和y的二元一次方程組,解方程組求出x和y的值,進而求解即可.【詳解】解:設(shè)A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點睛】本題考查了利用二元一次方程組解決現(xiàn)實生活中的問題.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程組,再求解.15、1【解析】
如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設(shè)PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設(shè)PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造相似三角形解決問題,屬于中考常考題型.16、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結(jié)論為:②③.考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).三、解答題(共8題,共72分)17、(1)a=;(2)①x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】
(1)把原點坐標代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點式,即可得到拋物線的對稱軸和拋物線的頂點的縱坐標;(3)設(shè)A(m,1),B(n,1),利用拋物線與x軸的交點問題,則m、n為方程ax2﹣4ax+3a﹣2=1的兩根,利用判別式的意義解得a>1或a<﹣2,再利用根與系數(shù)的關(guān)系得到m+n=4,mn=,然后根據(jù)完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4?≤16,接著解關(guān)于a的不等式,最后確定a的范圍.【詳解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,拋物線的對稱軸為直線x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)設(shè)A(m,1),B(n,1),∵m、n為方程ax2﹣4ax+3a﹣2=1的兩根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4?≤16,即≥1,解得a≥或a<1.∴a的范圍為a<﹣2或a≥.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠1)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).18、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質(zhì)得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當AB∥CD時,則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點:相似形綜合題.19、(1).(2)公平.【解析】
試題分析:(1)首先根據(jù)題意結(jié)合概率公式可得答案;(2)首先根據(jù)(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.試題解析:(1)共有4張牌,正面是中心對稱圖形的情況有3種,所以摸到正面是中心對稱圖形的紙牌的概率是;(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共產(chǎn)生12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中兩張牌都是軸對稱圖形的有6種,∴P(兩張都是軸對稱圖形)=,因此這個游戲公平.考點:游戲公平性;軸對稱圖形;中心對稱圖形;概率公式;列表法與樹狀圖法.20、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】試題分析:(1)將B坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;將A坐標代入反比例解析式求出n的值,確定出A的坐標,將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;(2)對于直線AB,令y=0求出x的值,即可確定出C坐標,三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;(3)由兩函數(shù)交點A與B的橫坐標,利用圖象即可求出所求不等式的解集.試題解析:(1)∵B(2,﹣4)在y=上,∴m=﹣1.∴反比例函數(shù)的解析式為y=﹣.∵點A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b經(jīng)過A(﹣4,2),B(2,﹣4),∴,解之得.∴一次函數(shù)的解析式為y=﹣x﹣2.(2)∵C是直線AB與x軸的交點,∴當y=0時,x=﹣2.∴點C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.(3)不等式的解集為:﹣4<x<0或x>2.21、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】
(1)首先用待定系數(shù)法求出拋物線的解析式,然后進一步確定點B,C的坐標.(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點的坐標為.如答圖1所示,過點作軸于點M,則,,.過點作于點,則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當時,如答圖2所示:設(shè)與交于點,可得,.設(shè)與的交點為,則:.解得,∴..(2)當時,如答圖3所示:設(shè)分別與交于點、點.∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關(guān)系式為:.22、B60【解析】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出結(jié)論;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數(shù).詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設(shè)與交于點∵直線是等邊的對稱軸∴,∵經(jīng)順時針旋轉(zhuǎn)后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟記旋轉(zhuǎn)的性質(zhì)及垂直平分線的性質(zhì),注意只證明一點是不能說明這條直線是垂直平分線的.23、(1)見解析;(2)見解析【解析】
(1)求出EF∥AC,根據(jù)EF=AC,利用平行四邊形的判定推出四邊形ACEF是平行四邊形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根據(jù)菱形的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光學儀器的常見故障及維修方法考核試卷
- 2024施工分包合同模板
- 2024英文合同范本對照代理英文合同范本
- 2024中國建設(shè)銀行(個人消費借款)保證合同
- 自身免疫性疾病的免疫檢驗(免疫學檢驗課件)
- 蘇州科技大學天平學院《工程制圖基礎(chǔ)》2022-2023學年第一學期期末試卷
- 放射性金屬礦選礦過程中的治理技術(shù)考核試卷
- 光化學金屬表面處理技術(shù)考核試卷
- SDZ-216-525-生命科學試劑-MCE
- Sch-13835-生命科學試劑-MCE
- 當代大學生幸福感課件
- 人感染H7N9禽流感流行病學調(diào)查方案
- 職業(yè)規(guī)劃大賽機器人工程
- 五年級科學 《光的反射》 一等獎
- 如何提高個人征信評分
- 《商朝的發(fā)展》課件
- 肺疾病護理的新進展與研究
- 貴州省黔東南州2022-2023學年七年級上學期期末文化水平測試數(shù)學試卷(含答案)
- 《農(nóng)村三資管理管理》課件
- 中國56個民族簡介(圖片很全)
- 炎癥性腸病完
評論
0/150
提交評論