版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
圓周角
一.復(fù)習(xí)引入:1.圓心角的定義?.OBC在同圓(或等圓)中,如果圓心角、弧、弦有一組量相等,那么它們所對應(yīng)的其余兩個量都分別相等。答:頂點在圓心的角叫圓心角2.上節(jié)課我們學(xué)習(xí)了一個反映圓心角、弧、弦三個量之間關(guān)系的一個結(jié)論,這個結(jié)論是什么?oABC考考你:你能仿照圓心角的定義,給下圖中象∠ACB這樣的角下個定義嗎?頂點在圓上,并且兩邊都和圓相交的角叫做圓周角.
√辨別是非如圖所示的角,哪些是圓周角√判斷下列各圖中,哪些是圓周角,為什么?
oABoABoABoABoABoABoABoABoABCCCCCCCC圖1圖2圖3圖4圖5圖6圖7圖8圖9
如圖:當(dāng)球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張角∠ABC,∠ADC,∠AEC.這三個角有何特點?它們的大小有什么關(guān)系?.BACBACBACBACBAC●OBACBACDEDE探究如圖是一個圓柱形的海洋館的橫截面的示意圖,人們可以通過其中的圓弧形玻璃AB觀看窗內(nèi)的海洋動物,同學(xué)甲站在圓心的O位置,同學(xué)乙站在正對著玻璃窗的靠墻的位置C,他們的視角(∠AOB和∠ACB)有什么關(guān)系?如果同學(xué)丙、丁分別站在他靠墻的位置D和E,他們的視角(∠ADB和∠AEB
)和同學(xué)乙的視角相同嗎?探究類比圓心角探知圓周角在同圓或等圓中,同弧或等弧所對的圓心角相等.在同圓或等圓中,同弧或等弧所對的圓周角有什么關(guān)系?
為了解決這個問題,我們先探究同弧所對的圓周角和圓心角之間有的關(guān)系.你會畫同弧所對的圓周角和圓心角嗎?圓周角和圓心角的關(guān)系在⊙O任取一個圓周角∠BCA,將圓對折,使折痕經(jīng)過圓心O和∠BCA的頂點C。由于點C的位置的取法可能不同,這時有三種情況:(1)折痕是圓周角的一條邊,如圖(1)(2)折痕在圓周角的內(nèi)部,如圖(2)
(3)折痕在圓周角的外部.如圖(3)
如圖,觀察圓周角∠ABC與圓心角∠AOC,它們的大小有什么關(guān)系?說說你的想法,并與同學(xué)交流.●OABC●OABC●OABC圓周角和圓心角的關(guān)系1.首先考慮一種特殊情況:當(dāng)圓心(O)在圓周角(∠ABC)的一邊(BC)上時,圓周角∠ABC與圓心角∠AOC的大小關(guān)系.∵∠AOC是△ABO的外角,∴∠AOC=∠B+∠A.∵OA=OB,●OABC∴∠A=∠B.∴∠AOC=2∠B.即∠ABC=∠AOC.根據(jù)以上證明你能得到什么結(jié)論?
2.考慮第二種情況當(dāng)圓心(O)在圓周角(∠ABC)的內(nèi)部時,圓周角∠ABC與圓心角∠AOC的大小關(guān)系會怎樣?
能否轉(zhuǎn)化為1的情況?過點B作直徑BD.由1可得:●O∴∠ABC=∠AOC.根據(jù)以上證明你又能得到什么結(jié)論?ABCD∠ABD=∠AOD,∠CBD=∠COD,圓周角和圓心角的關(guān)系圓周角和圓心角的關(guān)系3.考慮第二種情況當(dāng)圓心(O)在圓周角(∠ABC)的外部時,圓周角∠ABC與圓心角∠AOC的大小關(guān)系會怎樣?能否也轉(zhuǎn)化為1的情況?過點B作直徑BD.由1可得:●OD∠ABD=∠AOD,∠CBD=∠COD,ABC∴∠ABC=∠AOC.根據(jù)以上證明你又能得到什么結(jié)論?綜上所述,圓周角∠ABC與圓心角∠AOC的大小關(guān)系是:同弧所對的圓周角等于它所對的圓心角的一半.●OABC●OABC●OABC即∠ABC=∠AOC.結(jié)論:
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.相等的圓周角所對的弧也相等。圓周角定理思考如圖,線段AB是⊙O的直徑,點C是⊙O上任意一點(除點A、B),那么,∠ACB就是直徑AB所對的圓周角,想想看,∠ACB會是怎樣的角?OCBA90°的圓周角所對的弦是什么?
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.推論試找出下圖中所有相等的圓周角。
練習(xí)
1、在圓中,一條弧所對的圓心角和圓周角分別為(2x+100)°和(5x—30)°,求這條弧所對的圓心角和圓周角的度數(shù)。
2、如圖,∠A是圓O的圓周角,∠A=40°,求∠OBC的度數(shù)。
87654321EHFG如果∠A=44°,則∠BOC=____.如果∠BOC=44°,則∠A=____.如果∠A=35°,則∠BDC=____.OABCDLIAN練習(xí)xi如圖,點E、F、G、H在圓上,你會找出幾對相等的圓周角?例.如圖OA、OB、OC都是⊙O的半徑,∠AOB=2∠BOC.求證:∠ABC=∠BAC.CBOA例題講解例.已知:△ABC的三個頂點在⊙O上,∠BAC=50°,∠ABC=47°,求∠AOB.解:有題意知:∠A、∠B、∠C是圓周角,∠AOB是圓心角.又∵∠BAC=50°,∠ABC=47°∴∠ACB=180°-(∠A+∠B)=180°-(50°+47°)=83°.∴∠AOB=2∠ACB=2×83°=166°.BACO例題講解例.如圖⊙o的直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙o與D,求BC,AD,BD的長.ACBDO思考與鞏固1.如圖,在⊙O中,∠BOC=50°,求∠A的大小.●OBAC3、在圓中,一條弧所對的圓心角和
圓周角分別為(2x+100)°和
(5x—30)°,求這條弧所對的圓心角和圓周角的度數(shù)。
4、如圖,∠A是圓O的圓周角,∠A=40°,求∠OBC的度數(shù)。
OCBA
在⊙o中,圓心角∠AOB=56°,則弦AB所對的圓周角等于多少?即:在同圓或等圓中,同弦或等弦所對的圓周角相等或互補
在⊙o中,圓心角∠AOB=56°,則弧AB所對的圓周角等于多少?2.如圖,你能設(shè)法確定一個圓形紙片的圓心嗎?你有多少種方法?與同學(xué)交流一下.DABCOOO·方法一方法二方法三方法四AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)據(jù)中心可持續(xù)發(fā)展
- 贛南師范大學(xué)《司法口才學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《國際私法》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《教師口語》2021-2022學(xué)年第一學(xué)期期末試卷
- 徐州市2024-2025學(xué)年五年級上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷二(有答案)
- 福建師范大學(xué)協(xié)和學(xué)院《市場學(xué)導(dǎo)論》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《植物地理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024年二級建造師管理-思維導(dǎo)圖
- 福建師范大學(xué)《人口地理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《合唱指揮》2022-2023學(xué)年第一學(xué)期期末試卷
- BS5950-01-2000英國鋼結(jié)構(gòu)規(guī)范介紹
- 鉆孔樁水下混凝土灌注記錄計算表_圖文
- 老撾人民民主共和國藥品和醫(yī)療產(chǎn)品法
- 35KV箱變試驗報告
- 時代背景下杜甫詩歌的風(fēng)格特色分析
- 水土保持遙感監(jiān)測技術(shù)規(guī)范
- 切管機工操作規(guī)程
- 第三章企業(yè)的生產(chǎn)和成本PPT課件
- 工廠廢棄物管理制度廢棄物的分類、保管、運輸管理辦法 - 生產(chǎn)管理
- 【教案】3.4函數(shù)的應(yīng)用(一) 教學(xué)設(shè)計-2020年秋高中數(shù)學(xué)人教版(2019)必修一
- 第四章_相似原理和量綱分析
評論
0/150
提交評論