




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.2.設全集為R,集合,,則A. B. C. D.3.已知集合,集合,則A. B.或C. D.4.已知命題,那么為()A. B.C. D.5.《九章算術》是我國古代數學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.6.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.7.若點是角的終邊上一點,則()A. B. C. D.8.一只螞蟻在邊長為的正三角形區(qū)域內隨機爬行,則在離三個頂點距離都大于的區(qū)域內的概率為()A. B. C. D.9.若函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間上單調遞增,則的最大值為().A. B. C. D.10.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.11.tan570°=()A. B.- C. D.12.若函數在時取得最小值,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程是_________.14.已知函數為上的奇函數,滿足.則不等式的解集為________.15.已知雙曲線(,)的左,右焦點分別為,,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,,則雙曲線的離心率為__________.16.數學家狄里克雷對數論,數學分析和數學物理有突出貢獻,是解析數論的創(chuàng)始人之一.函數,稱為狄里克雷函數.則關于有以下結論:①的值域為;②;③;④其中正確的結論是_______(寫出所有正確的結論的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經過點.(1)求的值及該圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.18.(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列.(2)令,求數列的前項和.19.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.20.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?21.(12分)某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線①:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.(1)若選擇生產線①,求生產成本恰好為18萬元的概率;(2)為最大限度節(jié)約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.22.(10分)已知正實數滿足.(1)求的最小值.(2)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.2.B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.3.C【解析】
由可得,解得或,所以或,又,所以,故選C.4.B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.5.C【解析】
利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.6.D【解析】
根據底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.7.A【解析】
根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8.A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.9.C【解析】
由題意利用函數的圖象變換規(guī)律,正弦函數的單調性,求出的最大值.【詳解】解:把函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間,上單調遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數的圖象變換規(guī)律,正弦函數的單調性,屬于基礎題.10.D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.11.A【解析】
直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.12.D【解析】
利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用導數的運算法則求出導函數,再利用導數的幾何意義即可求解.【詳解】求導得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數的導數、導數的運算法則以及導數的幾何意義,屬于基礎題.14.【解析】
構造函數,利用導數判斷出函數的單調性,再將所求不等式變形為,利用函數的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數單調遞減;當時,,此時函數單調遞增.所以,函數在處取得極小值,也是最小值,即,,,,即,所以,函數在上為增函數,函數為上的奇函數,則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構造函數,求函數的導數,利用導數和函數單調性之間的關系是解決本題的關鍵.綜合性較強.15.【解析】
設,由雙曲線的定義得出:,由得為等腰三角形,設,根據,可求出,得出,再結合焦點三角形,利用余弦定理:求出和的關系,即可得出離心率.【詳解】解:設,由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設,,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點睛】本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.16.②【解析】
根據新定義,結合實數的性質即可判斷①②③,由定義求得比小的有理數個數,即可確定④.【詳解】對于①,由定義可知,當為有理數時;當為無理數時,則值域為,所以①錯誤;對于②,因為有理數的相反數還是有理數,無理數的相反數還是無理數,所以滿足,所以②正確;對于③,因為,當為無理數時,可以是有理數,也可以是無理數,所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數的綜合應用,正確理解題意是解決此類問題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),圓的方程為:.(2)答案見解析【解析】
(1)根據題意,可知點的坐標為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設的方程為,與拋物線聯立方程組,根據,求得,化簡解得,進而求得點的坐標為,分別求出,,利用向量的數量積為0,即可證出.【詳解】解:(1)易知點的坐標為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標為.所以,,.故.【點睛】本題考查拋物線的標準方程和圓的方程,考查直線和拋物線的位置關系,利用聯立方程組、求交點坐標以及向量的數量積,考查解題能力和計算能力.18.(1)見解析;(2)【解析】
(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數列的證明,考查了等差數列及等比數列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.19.(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.20.(1)6種;(2);(3).【解析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數為條.(2)小明途中恰好經過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數為變量,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小店合作協議書合同
- 銀行租借合同協議書模板
- 2021法制工作報告
- 進口食品標語
- 中國氟化鈮(V)項目商業(yè)計劃書
- 加固工程(更新)融資投資立項項目可行性研究報告(2025咨詢)
- 家居商業(yè)品牌策劃書模板3
- 按揭車輛轉讓合同協議書
- 美容美發(fā)店發(fā)型設計與護理手冊
- 外賣柜創(chuàng)業(yè)計劃書
- 轉體施工案例
- GB/T 44827-2024分子體外診斷檢驗尿液、靜脈血清和血漿代謝組學檢驗前過程的規(guī)范
- 肩關節(jié)鏡術后康復護理
- 企業(yè)環(huán)保項目激勵制度設計
- 2024年汽車駕駛員(技師)職業(yè)鑒定理論考試題庫(含答案)
- 上海市市轄區(qū)(2024年-2025年小學四年級語文)統(tǒng)編版期末考試(下學期)試卷及答案
- 叔侄關系斷絕協議書
- 2024年上海市高考語文真題現代文二《斑鳩》簡析及相關常規(guī)題型歸納
- 七年級下冊英語語法填空專項訓練100題含答案5篇
- 配電室火災應急處置預案
- 2024年高考英語考前押題密卷(全國卷1)(含答案與解析)
評論
0/150
提交評論