版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,該幾何體的主視圖是()A. B. C. D.2.要制作兩個形狀相同的三角形框架,其中一個三角形的三邊長分別為,和,另一個三角形的最短邊長為2.5cm,則它的最長邊為()A.3cm B.4cm C.4.5cm D.5cm3.邊長分別為6,8,10的三角形的內(nèi)切圓半徑與外接圓半徑的比為()A.1:5 B.4:5 C.2:10 D.2:54.已知x1,x2是一元二次方程的兩根,則x1+x2的值是()A.0 B.2 C.-2 D.45.如圖,在平面直角坐標(biāo)中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為12,則C點坐標(biāo)為()A.(6,4) B.(6,2) C.(4,4) D.(8,4)6.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.7.如果反比例函數(shù)y=kx的圖像經(jīng)過點(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限8.如圖,AB是⊙O的直徑,點C,D在直徑AB一側(cè)的圓上(異于A,B兩點),點E在直徑AB另一側(cè)的圓上,若∠E=42°,∠A=60°,則∠B=()A.62° B.70° C.72° D.74°9.已知OA=5cm,以O(shè)為圓心,r為半徑作⊙O.若點A在⊙O內(nèi),則r的值可以是()A.3cm B.4cm C.5cm D.6cm10.下列方程中是關(guān)于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)2二、填空題(每小題3分,共24分)11.如圖,將二次函數(shù)y=(x-2)2+1的圖像沿y軸向上平移得到一條新的二次函數(shù)圖像,其中A(1,m),B(4,n)平移后對應(yīng)點分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數(shù)對應(yīng)的函數(shù)表達(dá)是__________________.12.已知三個邊長分別為2,3,5的正方形如圖排列,則圖中陰影部分的面積為_____.13.如圖,已知正方形ABCD的邊長為1,點M是BC邊上的動點(不與B,C重合),點N是AM的中點,過點N作EF⊥AM,分別交AB,BD,CD于點E,K,F(xiàn),設(shè)BM=x.(1)AE的長為______(用含x的代數(shù)式表示);(2)設(shè)EK=2KF,則的值為______.14.如圖,在△ABC中,AB=3,AC=4,BC=6,D是BC上一點,CD=2,過點D的直線l將△ABC分成兩部分,使其所分成的三角形與△ABC相似,若直線l與△ABC另一邊的交點為點P,則DP=________.15.若關(guān)于x的方程為一元二次方程,則m=__________.16.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當(dāng)FG∥AC時,BF的長為_____.17.在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.以頂點都是格點的正方形ABCD的邊為斜邊,向內(nèi)作四個全等的直角三角形,使四個直角頂點E,F(xiàn),G,H都是格點,且四邊形EFGH為正方形,我們把這樣的圖形稱為格點弦圖.例如,在如圖1所示的格點弦圖中,正方形ABCD的邊長為,此時正方形EFGH的而積為1.問:當(dāng)格點弦圖中的正方形ABCD的邊長為時,正方形EFGH的面積的所有可能值是_____(不包括1).18.如果函數(shù)是關(guān)于的二次函數(shù),則__________.三、解答題(共66分)19.(10分)在一個不透明的口袋里,裝有若干個完全相同的A、B、C三種球,其中A球x個,B球x個,C球(x+1)個.若從中任意摸出一個球是A球的概率為0.1.(1)這個袋中A、B、C三種球各多少個?(2)若小明從口袋中隨機模出1個球后不放回,再隨機摸出1個.請你用畫樹狀圖的方法求小明摸到1個A球和1個C球的概率.20.(6分)為了測量豎直旗桿的高度,某數(shù)學(xué)興趣小組在地面上的點處豎直放了一根標(biāo)桿,并在地面上放置一塊平面鏡,已知旗桿底端點、點、點在同一條直線上.該興趣小組在標(biāo)桿頂端點恰好通過平面鏡觀測到旗桿頂點,在點觀測旗桿頂點的仰角為.觀測點的俯角為,已知標(biāo)桿的長度為米,問旗桿的高度為多少米?(結(jié)果保留根號)21.(6分)如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.(1)求證:△MED∽△NFE;(2)當(dāng)EF=FC時,求k的值.(3)當(dāng)矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.22.(8分)某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽,現(xiàn)有甲、乙、丙三個小組進(jìn)入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄,甲、乙、丙三個小組各項得分如下表:小組
研究報告
小組展示
答辯
甲
91
80
78
乙
81
74
85
丙
79
83
90
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序:(2)如果按照研究報告占40%,小組展示占30%,答辯占30%,計算各小組的成績,哪個小組的成績最高?23.(8分)如圖,直線與軸交于點,與軸交于點,拋物線經(jīng)過點,.(1)求點B的坐標(biāo)和拋物線的解析式;(2)M(m,0)為x軸上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N,①點在線段上運動,若以,,為頂點的三角形與相似,求點的坐標(biāo);②點在軸上自由運動,若三個點,,中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱,,三點為“共諧點”.請直接寫出使得,,三點成為“共諧點”的的值.24.(8分)某學(xué)校在倡導(dǎo)學(xué)生大課間活動中,隨機抽取了部分學(xué)生對“我最喜愛課間活動”進(jìn)行了一次抽樣調(diào)查,分別從打籃球、踢足球、自由活動、跳繩、其它等5個方面進(jìn)行問卷調(diào)(每人只能選一項),根據(jù)調(diào)查結(jié)果繪制了如圖的不完整統(tǒng)計圖,請你根據(jù)圖中信息,解答下列問題.(1)本次調(diào)查共抽取了學(xué)生人;(2)求本次調(diào)查中喜歡踢足球人數(shù);(3)若甲、乙兩位同學(xué)通過抽簽的方式確定自己填報的課間活動,則兩位同學(xué)抽到同一運動的概率是多少?25.(10分)如圖,在中,,是的外接圓,連結(jié)OA、OB、OC,延長BO與AC交于點D,與交于點F,延長BA到點G,使得,連接FG.備用圖(1)求證:FG是的切線;(2)若的半徑為4.①當(dāng),求AD的長度;②當(dāng)是直角三角形時,求的面積.26.(10分)在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】找到從正面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從正面看易得是1個大正方形,大正方形左上角有個小正方形.故答案選:C.【點睛】本題主要考查了三視圖的知識,主視圖是從物體的正面看得到的視圖,難度適中.2、C【解析】根據(jù)相似三角形三邊對應(yīng)成比例進(jìn)行求解即可得.【詳解】設(shè)另一個三角形的最長邊為xcm,由題意得5:2.5=9:x,解得:x=4.5,故選C.【點睛】本題考查了相似三角形的性質(zhì),熟知相似三角形對應(yīng)邊成比例是解題的關(guān)鍵.3、D【分析】由面積法求內(nèi)切圓半徑,通過直角三角形外接圓半徑為斜邊一半可求外接圓半徑,則問題可求.【詳解】解:∵62+82=102,∴此三角形為直角三角形,∵直角三角形外心在斜邊中點上,∴外接圓半徑為5,設(shè)該三角形內(nèi)接圓半徑為r,∴由面積法×6×8=×(6+8+10)r,解得r=2,三角形的內(nèi)切圓半徑與外接圓半徑的比為2:5,故選D.【點睛】本題主要考查了直角三角形內(nèi)切圓和外接圓半徑的有關(guān)性質(zhì)和計算方法,解決本題的關(guān)鍵是要熟練掌握面積計算方法.4、B【解析】∵x1,x1是一元二次方程的兩根,∴x1+x1=1.故選B.5、A【分析】直接利用位似圖形的性質(zhì)結(jié)合相似比得出AD的長,進(jìn)而得出△OAD∽△OBG,進(jìn)而得出AO的長,即可得出答案.【詳解】∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴∴解得:OA=2,∴OB=6,∴C點坐標(biāo)為:(6,4),故選A.【點睛】此題主要考查了位似變換以及相似三角形的判定與性質(zhì),正確得出AO的長是解題關(guān)鍵.6、D【解析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).【詳解】解:綠球的概率:P==,故選:D.【點睛】本題考查概率相關(guān)概念,熟練運用概率公式計算是解題的關(guān)鍵.7、B【解析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特點可得k=12,再根據(jù)反比例函數(shù)的性質(zhì)可得函數(shù)圖象位于第一、三象限.【詳解】∵反比例函數(shù)y=kx的圖象經(jīng)過點(-3,-4∴k=-3×(-4)=12,∵12>0,∴該函數(shù)圖象位于第一、三象限,故選:B.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),關(guān)鍵是根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特點求出k的值.8、C【分析】連接AC.根據(jù)圓周角定理求出∠CAB即可解決問題.【詳解】解:連接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直徑,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故選:C.【點睛】本題主要考察圓周角定理,解題關(guān)鍵是連接AC.利用圓周角定理求出∠CAB.9、D【解析】試題分析:根據(jù)題意可知,若使點A在⊙O內(nèi),則點A到圓心的大小應(yīng)該小于圓的半徑,因此圓的半徑應(yīng)該大于1.故選D考點:點與圓的位置關(guān)系10、C【解析】依據(jù)一元二次方程的定義解答即可.【詳解】A.x20是分式方程,故錯誤;B.y2﹣3x+2=0是二元二次方程,故錯誤;C.x2=5x是一元二次方程,故正確;D.x2﹣4=(x+1)2是一元一次方程,故錯誤.故選:C.【點睛】本題考查了一元二次方程的定義,掌握一元二次方程的定義是解答本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、y=0.2(x-2)+2【解析】解:∵函數(shù)y=(x﹣2)2+1的圖象過點A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=1,∴A(1,1),B(4,1),過A作AC∥x軸,交B′B的延長線于點C,則C(4,1),∴AC=4﹣1=1.∵曲線段AB掃過的面積為12(圖中的陰影部分),∴AC?AA′=1AA′=12,∴AA′=4,即將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移4個單位長度得到一條新函數(shù)的圖象,∴新圖象的函數(shù)表達(dá)式是y=(x﹣2)2+2.故答案為y=0.2(x﹣2)2+2.點睛:本題主要考查了二次函數(shù)圖象與幾何變換以及平行四邊形面積求法等知識,根據(jù)已知得出AA′是解題的關(guān)鍵.12、.【解析】根據(jù)相似三角形的性質(zhì),利用相似比求出梯形的上底和下底,用面積公式計算即可.【詳解】解:如圖,對角線所分得的三個三角形相似,根據(jù)相似的性質(zhì)可知,解得,即陰影梯形的上底就是().再根據(jù)相似的性質(zhì)可知,解得:,所以梯形的下底就是,所以陰影梯形的面積是.故答案為:.【點睛】本題考查的是相似三角形的性質(zhì),相似三角形的對應(yīng)邊成比例.13、x【分析】(1)根據(jù)勾股定理求得AM,進(jìn)而得出AN,證得△AEN∽△AMB,由相似三角形的性質(zhì)即可求得AE的長;(2)連接AK、MG、CK,構(gòu)建全等三角形和直角三角形,證明AK=MK=CK,再根據(jù)四邊形的內(nèi)角和定理得∠AKM=90°,利用直角三角形斜邊上的中線等于斜邊的一半得NK=AM=AN,然后根據(jù)相似三角形的性質(zhì)求得==x,即可得出=x.【詳解】(1)解:∵正方形ABCD的邊長為1,BM=x,∴AM=,∵點N是AM的中點,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案為:;(2)解:如圖,連接AK、MG、CK,由正方形的軸對稱性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N為AM中點,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四邊形ABMK的內(nèi)角和為360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM為斜邊,N為AM的中點,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案為:x.【點睛】本題是四邊形的綜合題,考查了正方形的性質(zhì),相似三角形的判定和性質(zhì),全等三角形判定和性質(zhì),等腰三角形的性質(zhì),以及直角三角形斜邊.上的中線的性質(zhì),證得KN=
AN是解題的關(guān)鍵.14、1,,【分析】分別利用當(dāng)DP∥AB時,當(dāng)DP∥AC時,當(dāng)∠CDP=∠A時,當(dāng)∠BPD=∠BAC時求出相似三角形,進(jìn)而得出結(jié)果.【詳解】BC=6,CD=2,
∴BD=4,①如圖,當(dāng)DP∥AB時,△PDC∽△ABC,
∴,∴,∴DP=1;②如圖,當(dāng)DP∥AC時,△PBD∽△ABC.
∴,∴,∴DP=;③如圖,當(dāng)∠CDP=∠A時,∠DPC∽△ABC,∴,∴,∴DP=;④如圖,當(dāng)∠BPD=∠BAC時,過點D的直線l與另一邊的交點在其延長線上,,不合題意。綜上所述,滿足條件的DP的值為1,,.【點睛】本題考查了相似變換,利用分類討論得出相似三角形是解題的關(guān)鍵,注意不要漏解.15、-1【分析】根據(jù)一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:依題意得:|m|=1,且m-1≠0,
解得m=-1.
故答案為:-1.【點睛】本題考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.16、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.17、9或2或3.【解析】分析:共有三種情況:①當(dāng)DG=,CG=2時,滿足DG2+CG2=CD2,此時HG=,可得正方形EFGH的面積為2;②當(dāng)DG=8,CG=1時,滿足DG2+CG2=CD2,此時HG=7,可得正方形EFGH的面積為3;③當(dāng)DG=7,CG=4時,滿足DG2+CG2=CD2,此時HG=3,可得正方形EFGH的面積為9.詳解:①當(dāng)DG=,CG=2時,滿足DG2+CG2=CD2,此時HG=,可得正方形EFGH的面積為2.②當(dāng)DG=8,CG=1時,滿足DG2+CG2=CD2,此時HG=7,可得正方形EFGH的面積為3;③當(dāng)DG=7,CG=4時,滿足DG2+CG2=CD2,此時HG=3,可得正方形EFGH的面積為9.故答案為9或2或3.點睛:本題考查作圖-應(yīng)用與設(shè)計、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.18、1【分析】根據(jù)二次函數(shù)的定義得到且,然后解不等式和方程即可得到的值.【詳解】∵函數(shù)是關(guān)于的二次函數(shù),
∴且,解方程得:或(舍去),
∴.
故答案為:1.【點睛】本題考查二次函數(shù)的定義,關(guān)鍵是掌握二次函數(shù)的定義:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù).三、解答題(共66分)19、(1)這個袋中A、B、C三種球分別為1個、1個、2個;(2)【分析】(1)由題意列方程,解方程即可;(2)首先畫樹狀圖,由概率公式即可得出答案.【詳解】解:由題意得:[x+x+(x+1)]=x,解得:x=1,∴x+1=2,答:這個袋中A、B、C三種球分別為1個、1個、2個;(2)由題意,畫樹狀圖如圖所示共有12個等可能的結(jié)果,摸到1個A球和1個C球的結(jié)果有4個,∴摸到1個A球和1個C球的概率為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意方程思想的應(yīng)用.20、【分析】作交于點,則,,易得,根據(jù)光的反射規(guī)律易得,可得△CDE和三角形ABE均為等腰直角三角形,設(shè),則,,,在中有,代入求解即可.【詳解】解:如圖作交于點,則,在中,易求得由光的反射規(guī)律易得,在中,易求得設(shè),則,,在中,,即,解得:即旗桿的高度為.【點睛】本題考查解直角三角形,解題的關(guān)鍵是熟練運用銳角三角函數(shù)的定義以及光的反射規(guī)律,本題屬于中等題型21、(1)見解析;(2);(3)矩形EFHD的面積最小值為,k=.【分析】(1)由矩形的性質(zhì)得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,證出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)設(shè)AM=x,則MD=NC=4﹣x,由三角函數(shù)得出ME=x,得出NE=3﹣x,由相似三角形的性質(zhì)得出=,求出NF=x,得出FC=4﹣x﹣x=4﹣x,由勾股定理得出EF==,當(dāng)EF=FC時,得出方程4﹣x=,解得x=4(舍去),或x=,進(jìn)而得出答案;(3)由相似三角形的性質(zhì)得出==,得出DE=EF,求出矩形EFHD的面積=DE×EF=EF2==,由二次函數(shù)的性質(zhì)進(jìn)而得出答案.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵M(jìn)N⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四邊形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:設(shè)AM=x,則MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,當(dāng)EF=FC時,4﹣x=,解得:x=4或x=,由題意可知x=4不合題意,當(dāng)x=時,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴,∴DE=EF,∴矩形EFHD的面積=DE×EF=EF2==∴當(dāng)x﹣=0時,即x=時,矩形EFHD的面積最小,最小值為:,∵cos∠MAE===,∴AE=AM=×=,此時k==.【點睛】本題考查了矩形與相似三角形,以及二次函數(shù)的應(yīng)用,解題的關(guān)鍵是利用相似三角形的性質(zhì)建立二次函數(shù)模型是解題的關(guān)鍵.22、(1)丙、甲、乙;(2)甲組的成績最高.【解析】試題分析:(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序即可;(2)分別計算各小組的加權(quán)平均成績,然后比較即可.試題解析:(1)甲:(91+80+78)÷3=83;乙:(81+74+85)÷3=80;丙:(79+83+90)÷3=84.∴小組的排名順序為:丙、甲、乙.(2)甲:91×40%+80×30%+78×30%=83.8乙:81×40%+74×30%+85×30%=80.1丙:79×40%+83×30%+90×30%=83.5∴甲組的成績最高考點:平均數(shù);加權(quán)平均數(shù).23、(1)B(0,2),;(2)①點M的坐標(biāo)為(,0)或M(,0);②m=-1或m=或m=.【分析】(1)把點代入求得c值,即可得點B的坐標(biāo);拋物線經(jīng)過點,即可求得b值,從而求得拋物線的解析式;(2)由軸,M(m,0),可得N(),①分∠NBP=90°和∠BNP=90°兩種情況求點M的坐標(biāo);②分N為PM的中點、P為NM的中點、M為PN的中點3種情況求m的值.【詳解】(1)直線與軸交于點,∴,解得c=2∴B(0,2),∵拋物線經(jīng)過點,∴,∴b=∴拋物線的解析式為;(2)∵軸,M(m,0),∴N()①有(1)知直線AB的解析式為,OA=3,OB=2∵在△APM中和△BPN中,∠APM=∠BPN,∠AMP=90°,若使△APM中和△BPN相似,則必須∠NBP=90°或∠BNP=90°,分兩種情況討論如下:(I)當(dāng)∠NBP=90°時,過點N作NC軸于點C,則∠NBC+∠BNC=90°,NC=m,BC=∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽Rt△BOA∴,即,解得m=0(舍去)或m=∴M(,0);(II)當(dāng)∠BNP=90°時,BNMN,∴點N的縱坐標(biāo)為2,∴解得m=0(舍去)或m=∴M(,0);綜上,點M的坐標(biāo)為(,0)或M(,0);②由①可知M(m,0),P(m,),N(m,),∵M(jìn),P,N三點為“共諧點”,∴有P為線段MN的中點、M為線段PN的中點或N為線段PM的中點,當(dāng)P為線段MN的中點時,則有2()=,解得m=3(三點重合,舍去)或m=;當(dāng)M為線段PN的中點時,則有+()=0,解得m=3(舍去)或m=?1;當(dāng)N為線段PM的中點時,則有=2(),解得m=3(舍去)或m=;綜上可知當(dāng)M,P,N三點成為“共諧點”時m的值為或?1或.考點:二次函數(shù)綜合題.24、(1)50;(2)12;(3).【分析】(1)根據(jù)條形圖和扇形圖中打籃球的數(shù)據(jù)計算得出總?cè)藬?shù);(2)用總?cè)藬?shù)減去其他組的人數(shù)即可得到踢足球的人數(shù);(3)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院《房地產(chǎn)市場理論與實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國礦業(yè)大學(xué)《中醫(yī)經(jīng)典綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙大寧波理工學(xué)院《材料與成型》2023-2024學(xué)年第一學(xué)期期末試卷
- 棗莊職業(yè)學(xué)院《塑性加工力學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- DB2201T 70-2024 非洲豬瘟病毒環(huán)境監(jiān)測采樣技術(shù)規(guī)范
- 數(shù)學(xué)游戲演講模板
- 專業(yè)案例(暖通空調(diào)專業(yè))-公用設(shè)備工程師(暖通空調(diào)專業(yè))《專業(yè)案例》押題密卷
- 生命起源理論教學(xué)
- 七夕節(jié)青年營銷策略
- 二零二五版交通事故傷殘鑒定及賠償協(xié)議3篇
- 鋼結(jié)構(gòu)施工管理培訓(xùn)課件
- 2024年度工程建設(shè)項目安全評價合同2篇
- 《飛機操縱面》課件
- 商業(yè)咨詢報告范文大全
- 自我發(fā)展與團(tuán)隊管理課件
- 《婦產(chǎn)科學(xué)》課件-17.盆腔器官脫垂
- 監(jiān)理報告范本
- 店鋪交割合同范例
- 大型活動LED屏幕安全應(yīng)急預(yù)案
- 2024年內(nèi)蒙古包頭市中考道德與法治試卷
- 湖南省長沙市2024-2025學(xué)年高二上學(xué)期期中考試地理試卷(含答案)
評論
0/150
提交評論