2023屆榆林市重點中學數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2023屆榆林市重點中學數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2023屆榆林市重點中學數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2023屆榆林市重點中學數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2023屆榆林市重點中學數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.關于x的一元二次方程x2+kx﹣2=0(k為實數(shù))根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.不能確定2.數(shù)據(jù)60,70,40,30這四個數(shù)的平均數(shù)是()A.40 B.50 C.60 D.703.如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.4.用一條長為40cm的繩子圍成一個面積為acm2的長方形,a的值不可能為()A.20 B.40 C.100 D.1205.一個長方形的面積為,且一邊長為,則另一邊的長為()A. B. C. D.6.某校九年級(1)班在舉行元旦聯(lián)歡會時,班長覺得快要畢業(yè)了,決定臨時增加一個節(jié)目:班里面任意兩名同學都要握手一次.小張同學統(tǒng)計了一下,全班同學共握手了465次.你知道九年級(1)班有多少名同學嗎?設九年級(1)班有x名同學,根據(jù)題意列出的方程是()A.=465 B.=465 C.x(x﹣1)=465 D.x(x+1)=4657.已知:如圖,菱形ABCD的周長為20cm,對角線AC=8cm,直線l從點A出發(fā),以1cm/s的速度沿AC向右運動,直到過點C為止在運動過程中,直線l始終垂直于AC,若平移過程中直線l掃過的面積為S(cm2),直線l的運動時間為t(s),則下列最能反映S與t之間函數(shù)關系的圖象是()A. B.C. D.8.如圖,點A、點B是函數(shù)y=的圖象上關于坐標原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積是4,則k的值是()A.-2 B.±4 C.2 D.±29.關于x的一元二次方程x2﹣x+sinα=0有兩個相等的實數(shù)根,則銳角α等于()A.15° B.30° C.45° D.60°10.如圖,矩形的邊在x軸上,在軸上,點,把矩形繞點逆時針旋轉,使點恰好落在邊上的處,則點的對應點的坐標為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉90°后得Rt△FOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.12.不等式組x-2>0①2x-6>2②的解是________13.如圖,一人口的弧形臺階,從上往下看是一組同心圓被一條直線所截得的一組圓?。阎總€臺階寬度為32cm(即相鄰兩弧半徑相差32cm),測得AB=200cm,AC=BD=40cm,則弧AB所在的圓的半徑為_______________cm14.已知x=1是一元二次方程x2+ax+b=0的一個根,則代數(shù)式a2+b2+2ab的值是____________.15.如圖,是的內(nèi)接三角形,,的長是,則的半徑是__________.16.如圖,以點P為圓心的圓弧與x軸交于A,B兩點,點P的坐標為(4,2),點A的坐標為(2,0),則點B的坐標為______.17.如圖,在長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點D與點B重合,折痕為EF,則ΔABE的面積為________cm218.某10人數(shù)學小組的一次測試中,有4人的成績都是80分,其他6人的成績都是90分,則這個小組成績的平均數(shù)等于_____分.三、解答題(共66分)19.(10分)某水果超市第一次花費2200元購進甲、乙兩種水果共350千克.已知甲種水果進價每千克5元,售價每千克10元;乙種水果進價每千克8元,售價每千克12元.(1)第一次購進的甲、乙兩種水果各多少千克?(2)由于第一次購進的水果很快銷售完畢,超市決定再次購進甲、乙兩種水果,它們的進價不變.若要本次購進的水果銷售完畢后獲得利潤2090元,甲種水果進貨量在第一次進貨量的基礎上增加了2m%,售價比第一次提高了m%;乙種水果的進貨量為100千克,售價不變.求m的值.20.(6分)如圖,在平行四邊形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求證:△AEH≌△CGF.(2)若∠EFG=90°.求證:四邊形EFGH是正方形.21.(6分)在學習了矩形后,數(shù)學活動小組開展了探究活動.如圖1,在矩形中,,,點在上,先以為折痕將點往右折,如圖2所示,再過點作,垂足為,如圖3所示.(1)在圖3中,若,則的度數(shù)為______,的長度為______.(2)在(1)的條件下,求的長.(3)在圖3中,若,則______.22.(8分)如圖,在平面直角坐標系中,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,點A、B、C的坐標分別為(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出A1的坐標;(2)將△A1B1C1繞頂點A1逆時針旋轉90°后得到對應的△A1B2C2,畫出△A1B2C2,并求出線段A1C1掃過的面積.23.(8分)已知:如圖,將△ADE繞點A順時針旋轉得到△ABC,點E對應點C恰在D的延長線上,若BC∥AE.求證:△ABD為等邊三角形.24.(8分)2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:(1)求本次比賽獲獎的總人數(shù),并補全條形統(tǒng)計圖;(2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數(shù);(3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.25.(10分)如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.(1)求證:四邊形AECF是菱形;(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結果保留根號)26.(10分)解方程:2x2+3x﹣1=1.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】利用一元二次方程的根的判別式即可求【詳解】由根的判別式得,△=b2-4ac=k2+8>0故有兩個不相等的實數(shù)根故選A.【點睛】此題主要考查一元二次方程的根的判別式,利用一元二次方程根的判別式(△=b2-4ac)可以判斷方程的根的情況:一元二次方程的根與根的判別式有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0

時,方程無實數(shù)根,上述結論反過來也成立.2、B【分析】用四個數(shù)的和除以4即可.【詳解】(60+70+40+30)÷4=200÷4=50.故選B.【點睛】本題重點考查了算術平均數(shù)的計算,希望同學們要牢記公式,并能夠靈活運用.數(shù)據(jù)x1、x2、……、xn的算術平均數(shù):=(x1+x2+……+xn).3、A【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質得到==,然后根據(jù)比例的性質得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【點睛】本題考查了三角形的重心與相似三角形的性質與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.4、D【分析】設圍成面積為acm2的長方形的長為xcm,由長方形的周長公式得出寬為(40÷2﹣x)cm,根據(jù)長方形的面積公式列出方程x(40÷2﹣x)=a,整理得x2﹣20x+a=0,由△=400﹣4a≥0,求出a≤100,即可求解.【詳解】設圍成面積為acm2的長方形的長為xcm,則寬為(40÷2﹣x)cm,依題意,得x(40÷2﹣x)=a,整理,得x2﹣20x+a=0,∵△=400﹣4a≥0,解得a≤100,故選D.5、A【分析】根據(jù)長方形的面積公式結合多項式除以多項式運算法則解題即可.【詳解】長方形的面積為,且一邊長為,另一邊的長為故選:A.【點睛】本題考查多項式除以單項式、長方形的面積等知識,是常見考點,難度較易,掌握相關知識是解題關鍵.6、A【解析】因為每位同學都要與除自己之外的(x﹣1)名同學握手一次,所以共握手x(x﹣1)次,由于每次握手都是兩人,應該算一次,所以共握手x(x﹣1)÷2次,解此方程即可.【詳解】解:設九年級(1)班有x名同學,根據(jù)題意列出的方程是=465,故選A.【點睛】本題主要考查一元二次方程在實際生活中的應用,明白兩人握手應該只算一次并據(jù)此列出方程是解題的關鍵.7、B【分析】先由勾股定理計算出BO,OD,進而求出△AMN的面積.從而就可以得出0≤t≤4時的函數(shù)解析式;再得出當4<t≤8時的函數(shù)解析式.【詳解】解:連接BD交AC于點O,令直線l與AD或CD交于點N,與AB或BC交于點M.∵菱形ABCD的周長為20cm,∴AD=5cm.∵AC=8cm,∴AO=OC=4cm,由勾股定理得OD=OB==3cm,分兩種情況:(1)當0≤t≤4時,如圖1,MN∥BD,△AMN∽△ABD,∴,,∴MN=t,∴S=MN·AE=t·t=t2函數(shù)圖象是開口向上,對稱軸為y軸且位于對稱軸右側的拋物線的一部分;(2)當4<t≤8時,如圖2,MN∥BD,∴△CMN∽△CBD,∴,,MN=t+12,∴S=S菱形ABCD-S△CMN==t2+12t-24=(t-8)2+24.函數(shù)圖象是開口向下,對稱軸為直線t=8且位于對稱軸左側的拋物線的一部分.故選B.【點睛】本題是動點函數(shù)圖象題型,當某部分的解析式好寫時,可以寫出來,結合排除法,答案還是不難得到的.8、C【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴k>0,∵BC∥x軸,AC∥y軸,∴S△AOD=S△BOE=k,∵反比例函數(shù)及正比例函數(shù)的圖象關于原點對稱,∴A、B兩點關于原點對稱,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故選C.【點睛】本題考查反比例函數(shù)的性質.9、B【解析】解:∵關于x的一元二次方程有兩個相等的實數(shù)根,∴△=,解得:sinα=,∵α為銳角,∴α=30°.故選B.10、A【分析】作輔助線證明△∽△ON,列出比例式求出ON=,N=即可解題.【詳解】解:過點作⊥x軸于M,過點作⊥x軸于N,由旋轉可得,△∽△ON,∵OC=6,OA=10,∴ON::O=:OM:O=3:4:5,∴ON=,N=,∴的坐標為,故選A.【點睛】本題考查了相似三角形的性質,中等難度,做輔助線證明三角形相似是解題關鍵.二、填空題(每小題3分,共24分)11、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉的性質易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉的性質結合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉的性質證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關鍵.12、x>4【分析】分別解出不等式組中的每一個不等式,然后根據(jù)同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.13、1【分析】由于所有的環(huán)形是同心圓,畫出同心圓圓心,設弧AB所在的圓的半徑為r,利用勾股定理列出方程即可解答.【詳解】解:設弧AB所在的圓的半徑為r,如圖.作OE⊥AB于E,連接OA,OC,則OA=r,OC=r+32,∵OE⊥AB,

∴AE=EB=100cm,在RT△OAE中,在RT△OCE中,,則解得:r=1.故答案為:1.【點睛】本題考查垂徑定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.14、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,將其整體代入所求的代數(shù)式進行求值即可.【詳解】∵x=1是一元二次方程x2+ax+b=0的一個根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.15、【分析】連接OB、OC,如圖,由圓周角定理可得∠BOC的度數(shù),然后根據(jù)弧長公式即可求出半徑.【詳解】解:連接OB、OC,如圖,∵,∴∠BOC=90°,∵的長是,∴,解得:.故答案為:.【點睛】本題考查了圓周角定理和弧長公式,屬于基本題型,熟練掌握上述基本知識是解答的關鍵.16、(6,0)【詳解】解:過點P作PM⊥AB于M,則M的坐標是(4,0)∴MB=MA=4-2=2,∴點B的坐標為(6,0)17、6【解析】由折疊的性質可知AE與BE間的關系,根據(jù)勾股定理求出AE長可得面積.【詳解】解:由題意可知BE=ED.因為AD=AE+DE=AE+BE=9cm,所以BE=9-AEcm.在RtΔABE中,根據(jù)勾股定理可知,AB2+AE2=BE2,所以32+A故答案為:6【點睛】本題考查了勾股定理,由折疊性質得出直角邊與斜邊的關系是解題的關鍵.18、1.【分析】根據(jù)平均數(shù)的定義解決問題即可.【詳解】平均成績=(4×80+6×90)=1(分),故答案為1.【點睛】本題考查平均數(shù)的定義,解題的關鍵是掌握平均數(shù)的定義.三、解答題(共66分)19、(1)第一次購進甲種水果200千克,購進乙種水果10千克;(2)m的值為1.【分析】(1)設第一次購進甲種水果x千克,購進乙種水果y千克,根據(jù)該超市花費2200元購進甲、乙兩種水果共350千克,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)根據(jù)總利潤=每千克的利潤×銷售數(shù)量,即可得出關于m的一元二次方程,解之取其正值即可得出結論.【詳解】(1)設第一次購進甲種水果x千克,購進乙種水果y千克,依題意,得:,解得:.答:第一次購進甲種水果200千克,購進乙種水果10千克.(2)依題意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,整理,得:0.4m2+40m﹣690=0,解得:m1=1,m2=﹣11(不合題意,舍去).答:m的值為1.【點睛】考核知識點:一元二次方程應用.理解:總利潤=每千克的利潤×銷售數(shù)量.只有驗根.20、(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)全等三角形的判定定理SAS證得結論;(2)先證明四邊形EFGH是平行四邊形,再證明有一組鄰邊相等,然后結合∠EFG=90°,即可證得該平行四邊形是正方形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C.在△AEH與△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH(SAS),∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四邊形HEFG為平行四邊形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴平行四邊形EFGH是菱形.又∵∠EFG=90°,∴平行四邊形EFGH是正方形.【點睛】本題主要考查了四邊形的綜合性問題,關鍵要注意正方形和菱形的性質定理,結合考慮三角形的全等的證明,這是中考的必考點,必須熟練掌握.21、(1),1;(2)2;(3)【分析】(1)根據(jù)矩形的性質得出,可以推出,再根據(jù)折疊的性質即可得出答案;設AE=x,則BE=2x,再根據(jù)勾股定理即可得出AE的值.(2)作交于點,在中根據(jù)余弦得出BG,從而得出CG,再證明四邊形是矩形即可得出答案;(3)根據(jù)可得AG的值,從而推出BG的值,再根據(jù)線段的和與差即可得出答案.【詳解】(1)四邊形ABCD為矩形,設AE=x,則BE=2x在中,根據(jù)勾股定理即解得,(舍去)的長度為1.故答案為:,1.(2)如圖,作交于點,由(1)知.在中,∵,即,∴,∴.∵,∴四邊形是矩形,∴.(3)【點睛】本題考查了矩形與折疊、勾股定理、三角函數(shù),結合圖象構造直角三角形是解題的關鍵.22、(1)詳見解析;(2)圖詳見解析,【分析】(1)利用關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分,分別找出A、B、C的對應點,順次連接,即得到相應的圖形;(2)根據(jù)題意,作出對應點,然后順次連接即可得到圖形,再根據(jù)扇形的面積公式即可求出面積.【詳解】解:(1)如圖所示,△A1B1C1即為所求,點A1的坐標為:(-1,4);(2)如圖所示,△A1B2C2即為所求;.所以,線段A1C1掃過的面積=.【點睛】本題考查的是旋轉變換作圖.無論是何種變換都需先找出各關鍵點的對應點,然后順次連接即可.23、證明見解析.【分析】由旋轉的性質可得,,可得,由平行線的性質可得,可得,則可求,可得結論.【詳解】解:由旋轉知:△ADE≌△ABC,∴∠ACB=∠E,AC=AE,∴∠E=∠ACE,又BC∥AE,∴∠BCE+∠E=180°,即∠ACB+∠ACE+∠E=180°,∴∠E=60°,又AC=AE,∴△ACE為等邊三角形,∴∠CAE=60°又∠BAC=∠DAE∴∠BAD=∠CAE=60°又AB=AD∴△AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論