版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在正方形網格中,如圖放置,則()A. B. C. D.2.函數與()在同一坐標系中的圖象可能是()A. B. C. D.3.正八邊形的中心角為()A.45° B.60° C.80° D.90°4.如圖,已知小明、小穎之間的距離為3.6m,他們在同一盞路燈下的影長分別為1.8m,1.6m,已知小明、小穎的身高分別為1.8m,1.6m,則路燈的高為()A.3.4m B.3.5m C.3.6m D.3.7m5.如圖,將繞點逆時針旋轉得到,則下列說法中,不正確的是()A. B. C. D.6.如圖,在△ABC中,點D、E分別在AB、AC邊上,DE∥BC,若AD=1,BD=2,則的值為()A. B. C. D.7.矩形、菱形、正方形都一定具有的性質是()A.鄰邊相等 B.四個角都是直角C.對角線相等 D.對角線互相平分8.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A.6B.C.9D.9.拋物線y=2x2﹣3的頂點坐標是()A.(0,﹣3) B.(﹣3,0) C.(﹣,0) D.(0,﹣)10.下列四個圖形中,不是中心對稱圖形的是()A. B.C. D.11.方程x(x-1)=2(x-1)2的解為()A.1 B.2 C.1和2 D.1和-212.已知函數是反比例函數,則此反比例函數的圖象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限二、填空題(每題4分,共24分)13.如圖,在矩形中,的角平分線與交于點,的角平分線與交于點,若,,則=_______.14.如圖,是由10個小正三角形構造成的網格圖(每個小正三角形的邊長均為1),則sin(α+β)=__.15.若,且,則的值是__________.16.《九章算術》是東方數學思想之源,該書中記載:“今有勾八步,股一十五步,問勾中容圓徑幾何.”其意思為:“今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形內切圓的直徑是多少步.”該問題的答案是________步.17.已知=4,=9,是的比例中項,則=____.18.如圖,的直徑垂直弦于點,且,,則弦__________.三、解答題(共78分)19.(8分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.(1)經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;(2)因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.20.(8分)有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.(1)求被剪掉陰影部分的面積:(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?21.(8分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A非常了解”“B了解”“C基本了解”三個等級,并根據調查結果制作了如下圖所示兩幅不完整的統計圖.(1)這次調查的市民人數為,,;(2)補全條形統計圖;(3)若該市約有市民1000000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A非常了解”的程度.22.(10分)如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,,擺動臂可繞點旋轉,.(1)在旋轉過程中①當、、三點在同一直線上時,求的長,②當、、三點為同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉,點的位置由外的點轉到其內的點處,如圖2,此時,,求的長.(3)若連接(2)中的,將(2)中的形狀和大小保持不變,把繞點在平面內自由旋轉,分別取、、的中點、、,連接、、、隨著繞點在平面內自由旋轉,的面積是否發(fā)生變化,若不變,請直接寫出的面積;若變化,的面積是否存在最大與最小?若存在,請直接寫出面積的最大值與最小值,(溫馨提示)23.(10分)如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣1,1)、B(0,﹣2)、C(1,0),點P(0,2)繞點A旋轉180°得到點P1,點P1繞點B旋轉180°得到點P2,點P2繞點C旋轉180°得到點P3,(1)在圖中畫出點P1、P2、P3;(2)繼續(xù)將點P3繞點A旋轉180°得到點P4,點P4繞點B旋轉180°得到點P5,…,按此作法進行下去,則點P2020的坐標為.24.(10分)畫出拋物線y=﹣(x﹣1)2+5的圖象(要求列表,描點),回答下列問題:(1)寫出它的開口方向,對稱軸和頂點坐標;(2)當y隨x的增大而增大時,寫出x的取值范圍;(3)若拋物線與x軸的左交點(x1,0)滿足n≤x1≤n+1,(n為整數),試寫出n的值.25.(12分)如圖,在中,D、E分別為BC、AC上的點.若,AB=8cm,求DE的長.26.已知關于x的一元二次方程2x2+(2k+1)x+k=1.(1)求證:方程總有兩個實數根;(2)若該方程有一個根是正數,求k的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、B【分析】依據正切函數的定義:正切函數是直角三角形中,對邊與鄰邊的比值叫做正切.由中,,求解可得.【詳解】解:在中,,,則,故選:B.【點睛】本題主要考查解直角三角形,解題的關鍵是掌握正切函數的定義.2、D【分析】根據反比例函數與一次函數的圖象特點解答即可.【詳解】時,,在一、二、四象限,在一、三象限,無選項符合.時,,在一、三、四象限,()在二、四象限,只有D符合;故選:D.【點睛】本題主要考查了反比例函數的圖象性質和一次函數的圖象性質,關鍵是由的取值確定函數所在的象限.3、A【分析】根據中心角是正多邊形的外接圓相鄰的兩個半徑的夾角,即可求解.【詳解】∵360°÷8=45°,∴正八邊形的中心角為45°,故選:A.【點睛】本題主要考查正八邊形的中心角的定義,理解正八邊形的外接圓相鄰的兩個半徑的夾角是中心角,是解題的關鍵.4、B【分析】根據CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根據相似三角形的性質可知,,即可得到結論.【詳解】解:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,,解得:AB=3.5m,故選:B.【點睛】本題考查的是相似三角形的應用,相似三角形的判定和性質,熟練掌握相似三角形的判定和性質是解題的關鍵.5、A【分析】由旋轉的性質可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可分析求解.【詳解】∵將△ABC繞點A逆時針旋轉60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故選:A.【點睛】本題考查了旋轉的性質,全等三角形的性質,熟練運用旋轉的性質是關鍵.6、B【解析】試題分析:∵DE∥BC,∴,∵,∴.故選B.考點:平行線分線段成比例.7、D【解析】矩形、菱形、正方形都是平行四邊形,所以一定都具有的性質是平行四邊形的性質,即對角線互相平分.故選D.8、C【解析】試題分析:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2考點:切線的性質;最值問題.9、A【分析】根據題目中的函數解析式,可以直接寫出該拋物線的頂點坐標,本題得以解決.【詳解】∵拋物線y=2x2﹣3的對稱軸是y軸,∴該拋物線的頂點坐標為(0,﹣3),故選:A.【點睛】本題考查了拋物線的頂點坐標,找到拋物線的對稱軸是解題的關鍵.10、B【分析】根據中心對稱圖形的概念,即可求解.【詳解】A、是中心對稱圖形,故此選項不合題意;B、不是中心對稱圖形,故此選項符合題意;C、是中心對稱圖形,故此選項不合題意;D、是中心對稱圖形,故此選項不合題意.故選:B.【點睛】本題主要考查中心對稱圖形的概念掌握它的概念“把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形”,是解題的關鍵.11、C【分析】利用因式分解法求解可得.【詳解】x(x-1)=2(x-1)2,x(x-1)-2(x-1)2=0,(x-1)(x-2x+2)=0,即(x-1)(-x+2)=0,∴x-1=0或-x+2=0,解得:x=1或x=2,故選:C.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的特點靈活選用合適的方法.12、A【分析】首先根據反比例函數的定義,即可得出,進而得出反比例函數解析式,然后根據其性質,即可判定其所在的象限.【詳解】根據已知條件,得即∴函數解析式為∴此反比例函數的圖象在第一、三象限故答案為A.【點睛】此題主要考查反比例函數的性質,熟練掌握,即可解題.二、填空題(每題4分,共24分)13、.【分析】先延長EF和BC,交于點G,再根據條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據條件判斷三角形BEG為等腰三角形,最后根據,得出CG與DE的倍數關系,并根據進行計算即可.【詳解】延長EF和BC交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于點E∴∴∴直角三角形ABE中,又∵∠BED的角平分線EF與DC交于點F∴∵∴∴∴由,,可得∴設,,則∴∴解得∴故答案為:.【點睛】本題考查了矩形與角平分線的綜合問題,掌握等腰直角三角形的性質和相似三角形的性質以及判定是解題的關鍵.14、.【分析】連接BC,構造直角三角形ABC,由正三角形及菱形的對角線平分對角的性質,得出∠BCD=α=30°,∠ABC=90°,從而α+β=∠ACB,分別求出△ABC的邊長,【詳解】如圖,連接BC,∵上圖是由10個小正三角形構造成的網格圖,∴任意相鄰兩個小正三角形都組成一個菱形,∴∠BCD=α=30°,∠ABC=90°,∴α+β=∠ACB,∵每個小正三角形的邊長均為1,∴AB=2,在Rt△DBC中,,∴BC=,∴在Rt△ABC中,AC=,∴sin(α+β)=sin∠ACB=,故答案為:.【點睛】本題考查了構造直角三角形求三角函數值,解決本題的關鍵是要正確作出輔助線,明確正弦函數的定義.15、-2【分析】根據比例的性質得到3b=4a,結合a+b=14求得a、b的值,代入求值即可.【詳解】解:由a:b=3:4知3b=4a,所以b=,所以由a+b=14得到:,解得a=1.
所以b=8,所以a-b=1-8=-2.
故答案為:-2.【點睛】考查了比例的性質,內項之積等于外項之積.若,則ad=bc.16、1【分析】根據勾股定理求出直角三角形的斜邊,根據直角三角形的內切圓的半徑的求法確定出內切圓半徑,得到直徑.【詳解】解:根據勾股定理得:斜邊為=17,設內切圓半徑為r,由面積法r=3(步),即直徑為1步,
故答案為:1.考點:三角形的內切圓與內心.17、±6;【解析】試題解析:是的比例中項,又解得:故答案為:18、【分析】先根據題意得出⊙O的半徑,再根據勾股定理求出BE的長,進而可得出結論.【詳解】連接OB,∵,,∴OC=OB=(CE+DE)=5,∵CE=3,∴OE=5?3=2,∵CD⊥AB,∴BE==.∴AB=2BE=.故答案為:.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.三、解答題(共78分)19、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.20、(1)平方米;(2)米;【分析】(1)先根據圓周角定理可得弦BC為直徑,即可得到AB=AC,根據特殊角的銳角三角函數值可求得AB的長,最后根據扇形的面積公式即可求得結果;(2)設圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,根據弧長公式及圓的周長公式即可求得結果.【詳解】(1)∵∠BAC=90°∴弦BC為直徑∴AB=AC∴AB=AC=BC·sin45°=∴S陰影=S⊙O-S扇形ABC=()2-;(2)設圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,由題意得2r=,解得r=答:(1)被剪掉的陰影部分的面積為;(2)該圓錐的底面圓半徑是.【點睛】圓周角定理,特殊角的銳角三角函數值,扇形的面積公式,弧長公式,計算能力是初中數學學習中一個極為重要的能力,是中考的熱點,在各種題型中均有出現,一般難度不大,需特別注意.21、(1)500,12,32;(2)詳見解析;(3)320000【分析】(1)根據B等級的人數及其所占的百分比可求得本次調查的總人數,然后根據C等級的人數可求出其所占的百分比,進而根據各部分所占的百分比之和為1可求出A等級的人數所占的百分比,即可得出m,n的值;
(2)根據(1)中的結果可以求得A等級的人數,從而可以將條形統計圖補充完整;
(3)根據A等級的人數所占的百分比,利用樣本估計總體即“1000000×A等級人數所占的百分比”可得出結果.【詳解】解:(1)本次調查的人數為:280÷56%=500(人),又m%=×100%=12%,∴n%=1-56%-12%=32%.故答案為:500;12;32;
(2)選擇A的學生有:500-280-60=160(人),
補全的條形統計圖,如圖所示:
(3)1000000×32%=320000(人).
答:該市大約有320000人對“社會主義核心價值觀”達到“A非常了解”的程度.【點睛】本題考查條形統計圖、扇形統計圖、用樣本估計總體,解答本題的關鍵是明確題意,讀懂統計圖.22、(1)①或;②長為或;(2);(3)的面積會發(fā)生變化;存在,最大值為:,最小值為:【分析】(1)①分兩種情形分別求解即可;
②顯然不能為直角;當為直角時,根據計算即可;當為直角時,根據計算即可;(2)連接,,證得為等腰直角三角形,根據SAS可證得,根據條件可求得,根據勾股定理求得,即可求得答案;(3)根據三角形中位線定理,可證得是等腰直角三角形,求得,當取最大時,面積最大,當取最小時,面積最小,即可求得答案.【詳解】(1)①,或;②顯然不能為直角;當為直角時,,即,解得:;當為直角時,,即,;綜上:長為或;(2)如圖,連接,,根據旋轉的性質得:為等腰直角三角形,∴,,,,,,,在和中,,,,又∵,,,;(3)發(fā)生變化,存在最大值和最小值,理由:如圖,點P,M分別是,的中點,,,點N,P分別是,的中點,,,,,是等腰三角形,,,,,,,,,是等腰直角三角形;∴,當取最大時,面積最大,∴,當取最小時,面積最小,∴故:的面積發(fā)生變化,存在最大值和最小值,最大值為:,最小值為:.【點睛】本題是幾何變換綜合題,考查了等腰直角三角形的性質,勾股定理,全等三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,有一定的難度.23、(1)見解析;(2)(﹣2,﹣2)【分析】(1)利用網格特點和旋轉的性質畫出點P1、P2、P3即可;(2)畫出P1~P6,尋找規(guī)律后即可解決問題.【詳解】解:(1)點P1、P2、P3如圖所示,(2)(﹣2,﹣2)解析:如圖所示:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2)P5(2,﹣2),P6(0,2)∵6次一個循環(huán)∴2020÷6=336...4∴P2020(﹣2,﹣2)【點睛】本題考查坐標與圖形的性質、點的坐標等知識,解題的關
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人品牌營銷商業(yè)計劃書的成功策略
- 數字經濟背景下的跨境電商物流模式創(chuàng)新路徑分析
- 2025年度家具銷售定金合同范本大全模板
- 青年教師基本功大賽心得體會
- 云南省師范大學附屬中學2022屆高三適應性月考卷(二)政治試題-掃描版含答案
- 生物標志物的發(fā)現與應用
- 區(qū)域發(fā)展戰(zhàn)略
- 50個常用安全警示標志-高清A4紙打印
- 鎮(zhèn)江江蘇鎮(zhèn)江市委老干部局編外用工招聘筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 飼料品質穩(wěn)定性分析與控制考核試卷
- 叉車定期檢驗研究報告
- 人教版一年級數學上冊期末無紙筆考試試卷(A卷)【含答案】
- 2,3-二甲苯酚的理化性質及危險特性表
- 申報職稱:副教授演示課件
- 型濾池計算說明書
- 格力離心機技術服務手冊
- 水泥攪拌樁計算(完美)
- 旭化成離子交換膜的介紹
- JJRB輕鋼龍骨隔墻施工方案要點
- 石油石化用化學劑產品質量認可實施細則
- 快遞證明模板
評論
0/150
提交評論