【優(yōu)化方案】高中數(shù)學(xué) 第3章3.4互斥事件課件 蘇教必修3_第1頁(yè)
【優(yōu)化方案】高中數(shù)學(xué) 第3章3.4互斥事件課件 蘇教必修3_第2頁(yè)
【優(yōu)化方案】高中數(shù)學(xué) 第3章3.4互斥事件課件 蘇教必修3_第3頁(yè)
【優(yōu)化方案】高中數(shù)學(xué) 第3章3.4互斥事件課件 蘇教必修3_第4頁(yè)
【優(yōu)化方案】高中數(shù)學(xué) 第3章3.4互斥事件課件 蘇教必修3_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

3.4互斥事件學(xué)習(xí)目標(biāo)1.理解互斥事件、對(duì)立事件的含義,會(huì)判斷所給事件的類型;2.掌握互斥事件的概率加法公式并會(huì)應(yīng)用;3.正確理解互斥、對(duì)立事件的關(guān)系并能正確區(qū)分、判斷.

課堂互動(dòng)講練知能優(yōu)化訓(xùn)練3.4

互斥事件課前自主學(xué)案課前自主學(xué)案溫故夯基1.古典概型的兩個(gè)特征為_______、_________,幾何概型的兩個(gè)特征為_______、__________.2.古典概型的概率計(jì)算公式為P=_______,幾何概型的概率計(jì)算公式為P=____________.有限性等可能性無(wú)限性等可能性知新益能1.互斥事件(1)_______________的兩個(gè)事件稱為互斥事件.(2)如果事件A1,A2,…,An中的_____________

__________,就說事件A1,A2,…,An彼此互斥.(3)設(shè)A,B為互斥事件,若事件A,B__________發(fā)生,我們把這個(gè)事件記作A+B.不能同時(shí)發(fā)生任何兩個(gè)都是互斥事件至少有一個(gè)2.互斥事件的概率加法公式(1)如果事件A,B互斥,那么___________發(fā)生的概率,等于事件A,B分別發(fā)生的概率的和,即P(A+B)=___________.(2)一般地,如果事件A1,A2,…,An兩兩互斥,那么P(A1+A2+…+An)=________________

_______.事件A+BP(A)+P(B)P(A1)+P(A2)+…+P(An)問題探究對(duì)立事件一定是互斥事件嗎?反之是否成立?提示:對(duì)立事件一定是互斥事件,但互斥事件不一定是對(duì)立事件.課堂互動(dòng)講練考點(diǎn)突破互斥事件,對(duì)立事件的判斷考點(diǎn)一(1)利用基本概念來(lái)判斷:①互斥事件不可能同時(shí)發(fā)生;②對(duì)立事件首先是互斥事件,且必有一個(gè)發(fā)生.(2)利用集合的觀點(diǎn)來(lái)判斷:設(shè)事件A與B它們所含的結(jié)果組成的集合分別是A,B,①若事件A與B互斥,即集合A∩B=?;②若事件A與B對(duì)立,即集合A∩B=?,且A∪B=I,也即A=?IB或B=?IA;③對(duì)互斥事件A與B的和A+B可理解為集合A∪B.判斷下列給出的各對(duì)事件,是否為互斥事件,是否為對(duì)立事件,并說明理由.從40張撲克牌(紅桃、黑桃、方塊、梅花,點(diǎn)數(shù)從1~10各10張)中,任取一張.(1)“抽出紅桃”與“抽出黑桃”;(2)“抽出紅色牌”與“抽出黑色牌”;(3)“抽出牌的點(diǎn)數(shù)為5的倍數(shù)”與“抽出牌的點(diǎn)數(shù)大于9”.【思路點(diǎn)撥】根據(jù)互斥事件與對(duì)立事件的定義進(jìn)行判斷.例1【解】(1)是互斥斥事件件,不不是對(duì)對(duì)立事事件..理由是是:從從40張撲克克牌中中任意意抽取取1張,“抽出紅紅桃”和“抽出黑黑桃”是不可可能同同時(shí)發(fā)發(fā)生的的,所所以是是互斥斥事件件.同同時(shí),,不能能保證證其中中必有有一個(gè)個(gè)發(fā)生生,這這是由由于還還可能能抽出出“方塊”或者“梅花”,因此,,二者者不是是對(duì)立立事件件.(2)既是互互斥事事件,,又是是對(duì)立立事件件.理由是是:從從40張撲克克牌中中,任任意抽抽取1張,“抽出紅紅色牌牌”與“抽出黑黑色牌牌”,兩個(gè)個(gè)事件件不可可能同同時(shí)發(fā)發(fā)生,,且其其中必必有一一個(gè)發(fā)發(fā)生,,所以以它們們既是是互斥斥事件件,又又是對(duì)對(duì)立事事件..(3)不是是互互斥斥事事件件,,當(dāng)當(dāng)然然不不可可能能是是對(duì)對(duì)立立事事件件..理由由是是::從從40張撲撲克克牌牌中中任任意意抽抽取取1張,,“抽出出的的牌牌的的點(diǎn)點(diǎn)數(shù)數(shù)為為5的倍倍數(shù)數(shù)”與“抽出出的的牌牌的的點(diǎn)點(diǎn)數(shù)數(shù)大大于于9”這兩兩個(gè)個(gè)事事件件可可能能同同時(shí)時(shí)發(fā)發(fā)生生,,如如抽抽得得點(diǎn)點(diǎn)數(shù)數(shù)為為10,因因此此,,二二者者不不是是互互斥斥事事件件,,當(dāng)當(dāng)然然不不可可能能是是對(duì)對(duì)立立事事件件..【名師師點(diǎn)點(diǎn)評(píng)評(píng)】“互斥斥事事件件”和“對(duì)立立事事件件”都是是就就兩兩個(gè)個(gè)事事件件而而言言的的..互互斥斥事事件件是是不不可可能能同同時(shí)時(shí)發(fā)發(fā)生生的的兩兩個(gè)個(gè)事事件件,,而而對(duì)對(duì)立立事事件件是是其其中中必必有有一一個(gè)個(gè)要要發(fā)發(fā)生生的的互互斥斥事事件件..因因此此,,對(duì)對(duì)立立事事件件一一定定是是互互斥斥事事件件,,但但互互斥斥事事件件不不一一定定是是對(duì)對(duì)立立事事件件..自我我挑挑戰(zhàn)戰(zhàn)1判斷斷下下列列各各對(duì)對(duì)事事件件是是否否是是互互斥斥事事件件,,是是否否是是對(duì)對(duì)立立事事件件,,并并說說明明理理由由..某小小組組有有3名男男生生和和2名女女生生,,從從中中任任選選2名學(xué)學(xué)生生去去參參加加演演講講比比賽賽..(1)恰有有1名男男生生和和恰恰有有2名男男生生;;(2)至少少有有1名男男生生和和至至少少有有1名女女生生;;(3)至少少有有1名男男生生和和全全是是男男生生;;(4)至少少有有1名男男生生和和全全是是女女生生..解::(1)是互互斥斥事事件件,,不不是是對(duì)對(duì)立立事事件件..理由由是是::在在所所選選的的2名學(xué)學(xué)生生中中,,“恰有有1名男男生生”實(shí)質(zhì)質(zhì)是是選選出出的的是是“1名男男生生1名女女生生”,它它與與“恰有有2名男男生生”不可可能能同同時(shí)時(shí)發(fā)發(fā)生生,,所所以以是是一一對(duì)對(duì)互互斥斥事事件件,,但但其其并并事事件件不不是是必必然然事事件件,,所所以以不不是是對(duì)對(duì)立立事事件件..(2)既不是互互斥事件件,也不不是對(duì)立立事件..理由是::“至少有1名男生”包括“1名男生1名女生”和“2名都是男男生”兩種結(jié)果果.“至少有1名女生”包括“1名女生1名男生”和“2名都是女女生”兩種結(jié)果果,它們們可同時(shí)時(shí)發(fā)生..(3)既不是互互斥事件件,也不不是對(duì)立立事件..理由是::“至少有1名男生”包括“1名男生1名女生”和“2名都是男男生”,這與“全是男生生”可同時(shí)發(fā)發(fā)生.(4)既是互斥斥事件,,又是對(duì)對(duì)立事件件.理由是::“至少有1名男生”包括“1名男生1名女生”和“2名都是男男生”兩種結(jié)果果,它與與“全是女生生”不可能同同時(shí)發(fā)生生,且其其并事件件是必然然事件,,所以是是對(duì)立事事件.互斥事件的概率加法公式考點(diǎn)二(1)將一個(gè)事事件的概概率問題題分拆為為若干個(gè)個(gè)互斥事事件,分分別求出出各事件件的概率率,然后后用加法法公式求求出結(jié)果果.(2)運(yùn)用互斥斥事件的的概率加加法公式式解題時(shí)時(shí),首先先要分清清事件間間是否互互斥,同同時(shí)要學(xué)學(xué)會(huì)把一一個(gè)事件件分拆為為幾個(gè)互互斥事件件,做到到不重不不漏.(3)常用步驟驟:①確定諸事事件彼此此互斥;;②諸事件中中有一個(gè)個(gè)發(fā)生;;③先求諸事事件分別別發(fā)生的的概率,,再求和和.(本題滿分分14分)一盒中裝裝有各色色球共12個(gè),其中5個(gè)紅球、、4個(gè)黑球、、2個(gè)白球、、1個(gè)綠球..從中隨隨機(jī)取出出1球,求::(1)取出的這這1球是紅球球或黑球球的概率率;(2)取出的這這1球是紅球球或黑球球或白球球的概率率.例2【名師點(diǎn)評(píng)評(píng)】求復(fù)雜事事件的概概率,首首先看此此事件是是否能分分成若干干個(gè)互斥斥事件的的和轉(zhuǎn)化化為求互互斥事件件和的概概率,從從而簡(jiǎn)化化運(yùn)算,,互斥事事件的概概率加法法公式是是一個(gè)很很基本的的計(jì)算公公式,解解題時(shí)要要在具體體的問題題中判斷斷各事件件間是否否互斥,,只有互互斥事件件才能用用概率加加法公式式,否則則不能使使用.自我挑戰(zhàn)戰(zhàn)2黃種人群群中各種種血型的的人所占占的比例例如下表表:血型ABABO該血型的人所占比例0.280.290.080.35已知同種種血型的的人互相相可以輸輸血,O型血可以以輸給任任一種血血型的人人,其他他不同血血型的人人不能互互相輸血血.小明明是B型血,若若小明因因病需要要輸血,,則:(1)任找一個(gè)個(gè)人,其其血可以以輸給小小明的概概率是多多少?(2)任找一個(gè)個(gè)人,其其血不能能輸給小小明的概概率是多多少?解:(1)對(duì)任一個(gè)個(gè)人,其其血型為為A,B,AB,O型的事件件分別為為A′、B′、C′、D′,它們是是互斥的的.由已已知有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因?yàn)锽,O型血可以輸血血給B型血的人,故“可以輸血給B型的人”為事件B′+D′,根據(jù)互斥事件件的概率加法法公式,得::P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能輸給給B型血的人,故“不能輸血給B型血的人”為事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.對(duì)立事件的概率公式考點(diǎn)三某戰(zhàn)士射擊一一次,問:(1)若事件A(中靶)的概率為0.95,則事件E(不中靶)的概率為多少少?(2)若事件B(中靶環(huán)數(shù)大于于5)的概率為0.7,那么事件C(中靶環(huán)數(shù)小于于6)的概率為多少少?(3)在(1)(2)的條件下,求求事件D(中靶環(huán)數(shù)大于于0且小于6)的概率是多少少?【思路點(diǎn)撥】解答本題可考考慮應(yīng)用對(duì)立立事件求解..例3【解】(1)A與E互為對(duì)立事件件.所以P(A)+P(E)=1,所以P(E)=1-P(A)=1-0.95=0.05

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論