版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
MultipleRegressionAnalysisP289
多元回歸分析之模型設(shè)定和數(shù)據(jù)問題
y=b0+b1x1+b2x2+...bkxk+uSpecificationandDataProblems模型設(shè)定和數(shù)據(jù)問題1ChapterOutline 本章大綱FunctionalFormmisspecification
函數(shù)形式誤設(shè)-討論模型誤設(shè)的結(jié)果-P289UsingProxyvariablesforunobservedexplanatoryvariables
對觀測不到的變量使用代理變量-討論用代理變量來減輕有偏性PropertiesoftheOLSUnderMeasurementError
有測量誤差的OLS性質(zhì)-推導(dǎo)和解釋MissingData,NonrandomSamples,andoutliers
數(shù)據(jù)缺失、非隨機(jī)樣本和離群點(diǎn)-討論額外的數(shù)據(jù)問題2FunctionalForm
函數(shù)形式Howdoweknowifwe’vegottentherightfunctionalformforourmodel?我們?nèi)绾沃滥P褪欠竦玫秸_的函數(shù)形式呢?P289:異方差的出現(xiàn)可以看成是模型的錯誤設(shè)定,但不影響有偏性和一致性,還可以通過WLS來減輕;本章討論u與xi的相關(guān)性,如果相關(guān),稱xi為外生變量,為什么?當(dāng)被忽略的自變量為其他變量的函數(shù)時(shí),將產(chǎn)生函數(shù)形式誤設(shè)這一問題。何謂函數(shù)形式誤設(shè)?3FunctionalForm(continued)
函數(shù)形式(續(xù))
First,useeconomictheorytoguideyou首先,用經(jīng)濟(jì)理論的指導(dǎo)Thinkabouttheinterpretation考慮它的解釋Doesitmakemoresenseforxtoaffectyinpercentage(uselogs)orabsoluteterms?x影響y的更合理的方式是百分比的形式(用log形式),還是絕對量的形式?Doesitmakemoresenseforthederivativeofx1tovarywithx1(quadratic)orwithx2(interactions)ortobefixed?x1的系數(shù)更合理的形式是隨x1變化(二次形式),隨x2變化(交互作用),還是固定不變?P290:2個誤設(shè)案例,一個是忽略了二次項(xiàng),一個是忽略了交叉項(xiàng)。也可能是沒有用LOG形式;回顧第三章P85假設(shè)3不成立的幾種情況,函數(shù)形式誤設(shè)的后果P290EXP.9.1-閱讀4FunctionalFormMisspecification
函數(shù)形式誤設(shè)Amultipleregressionmodelsuffersfromfunctionalformmisspecificationwhenitdoesnotproperlyaccountfortherelationshipbetweenthedependentandtheobservedexplanatoryvariables.
當(dāng)一個多元回歸模型不能正確地說明被解釋變量和觀察到的解釋變量之間的關(guān)系時(shí),此模型存在函數(shù)形式誤設(shè)問題。5FunctionalFormMisspecification
函數(shù)形式誤設(shè)Misspecifyingthefunctionalformofamodelcanhaveseriousconsequences.Wemayobtainbiasedorinconsistentestimatorsofthepartialeffects.誤設(shè)一個模型的函數(shù)形式可能產(chǎn)生嚴(yán)重的后果。我們得到的局部效應(yīng)的估計(jì)量可能有偏或不一致。Onewayout:toaddquadratictermsofanysignificantvariablestoamodelandtoperformajointtestofsignificance.
一種方法:向模型加入任何重要變量的二次項(xiàng),進(jìn)行一個聯(lián)合顯著性檢驗(yàn)。-加入二次項(xiàng),對二次項(xiàng)系數(shù)聯(lián)合顯著性F檢驗(yàn)通過時(shí),顯示的癥狀往往是誤設(shè),如誤將對數(shù)模型為水平模型。另外經(jīng)濟(jì)數(shù)據(jù)中,二次項(xiàng)可以解決大部分非線性問題-P2906Example:ModelingCrime
例子:對犯罪建模-P292Dependentvariable:被解釋變量:Narr86,#timesarrested,1986(1986年被捕次數(shù))ExplanatoryVariables:解釋變量:pcnvproportionofpriorconvictions以前被定罪比例avgsen
avgsentencelength,mos.平均判刑期限,單位:月tottime timeinprisonsince18,mos.18歲以來的服刑時(shí)間,單位:月Ptime86mos.inprisonduring19861986年的服刑時(shí)間,單位:月解讀:1.為什么加入二次項(xiàng),因?yàn)樗巾?xiàng)T檢驗(yàn)很顯著;2.加入變量的二次項(xiàng)后,原先的水平變量系數(shù)變化很大;同時(shí)二次項(xiàng)聯(lián)合F顯著;3.二次項(xiàng)加入,模型的解讀變得困難,可能有更深刻的實(shí)際意義7Example:ModelingCrime
例子:對犯罪建模Explanatoryvariables解釋變量Qemp86#quartersemployed,19861986年被雇傭季度數(shù)inc86 legalincome,1986,$100s1986年合法收入,單位:百美元black =1ifblack如果是黑人,black=1hispan =1ifHispanic如果是西班牙裔,hispan=1First,weregressthedependentvariablesontheindependentvariables,withoutanysquareterms.首先,我們將被解釋變量向解釋變量回歸,不包含任何平方項(xiàng)。8
regnarr86pcnv
avgsen
tottimeptime86qemp86inc86blackhispanSource|SSdfMSNumberofobs=2725-------------+------------------------------F(8,2716)=26.47Model|145.390104818.173763Prob>F=0.0000Residual|1864.957052716.686655763R-squared=0.0723-------------+------------------------------AdjR-squared=0.0696Total|2010.347162724.738012906RootMSE=.82865------------------------------------------------------------------------------narr86|Coef.Std.Err.tP>|t|[95%Conf.Interval]-------------+----------------------------------------------------------------
pcnv|-.1332344.0403502-3.300.001-.2123546-.0541141
avgsen|-.0113177.0122401-0.920.355-.0353185.0126831
tottime|.0120224.00943521.270.203-.0064785.0305233
ptime86|-.0408417.008812-4.630.000-.0581206-.0235627qemp86|-.0505398.0144397-3.500.000-.0788538-.0222258
inc86|-.0014887.0003406-4.370.000-.0021566-.0008207black|.3265035.04541567.190.000.2374508.4155561
hispan|.1939144.03971134.880.000.1160469.2717818_cons|.5686855.036046115.780.000.4980048.6393661------------------------------------------------------------------------------9Plottingnarr86againstpncv
繪圖:narr86關(guān)于pncv10Plottingnarr86againstinc86
繪圖:narr86關(guān)于pncv11Plottingnarr86againstptime86
繪圖:narr86關(guān)于pncv12
narr86Coef.Std.Err.tP>|t|[95%Conf.Interval]
pcnv.5525236.15423723.580.000.2500892.8549579
pcnvsq
-.7302119.1561177-4.680.000-1.036333-.4240903
avgsen-.0170216.0120539-1.410.158-.0406574.0066142
tottime.011954.00928251.290.198-.0062474.0301554
ptime86.2874334.04425826.490.000.2006501.3742166
pt86sq-.0296076.0038634-7.660.000-.037183-.0220321qemp86-.0140941.0173612-0.810.417-.0481366.0199485
inc86-.0034152.0008037-4.250.000-.0049912-.0018392
inc86sq7.19e-062.56e-062.810.0052.17e-06.0000122black.292296.044836.520.000.2043916.3802004
hispan.1636175.03945074.150.000.0862609.240974_cons.5046065.036835313.700.000.4323784.5768347AddingQuadratictermstosignificantVariables加入重要變量的平方項(xiàng)13Drawbacksofaddingsquaretermstodetectfunctionalformmisspecification
取消加入平方項(xiàng)以檢測函數(shù)形式誤設(shè)
Theoretically,wecantestjointexclusionrestrictionstoseeifhigherordertermsorinteractionsbelongtothemodel理論上,我們作排除性約束的聯(lián)合檢驗(yàn),來看高階項(xiàng)和交叉項(xiàng)是否屬于模型。Itcanbetedioustoaddandtestextraterms.Manydegreesoffreedomsmaybeused. 加入和檢驗(yàn)另外的項(xiàng)過程會很單調(diào)乏味且冗長。當(dāng)原模型解釋變量多時(shí)可能會消耗掉許多自由度。14Drawbacksofaddingsquaretermstodetectfunctionalformmisspecification
取消加入平方項(xiàng)以檢測函數(shù)形式誤設(shè)Somenonlinearitiescannotbepickedupbyaddingquadraticterms.Forexample,wemayfindasquaretermmatterswhenusinglogsismoreappropriate. 一些非線性關(guān)系不能通過加入二次項(xiàng)捕捉。例如,當(dāng)我們發(fā)現(xiàn)平方項(xiàng)重要時(shí),可能對數(shù)形式更加適合。15Ramsey’sRESETP292
Ramsey回歸設(shè)定誤差檢驗(yàn)AtestoffunctionalformisRamsey’sregressionspecificationerrortest(RESET)一種函數(shù)形式的檢驗(yàn)是Ramsey回歸設(shè)定誤差檢驗(yàn)(RESET)。RESETaddspolynomialsintheOLSfittedvaluestotheoriginalregression.RESET在原回歸中加入OLS擬合值的多項(xiàng)式-沒有明確的原理指出到底要加入多少個高次方的項(xiàng),但是平方和立方一般是有用的。16Ramsey’sRESET
Ramsey回歸設(shè)定誤差檢驗(yàn)
Insteadofaddingfunctionsofthex’sdirectly,weaddandtestfunctionsof?我們加入并檢驗(yàn)?的多次項(xiàng)函數(shù),而不是直接加入x的函數(shù)。注意:如何加入函數(shù)項(xiàng)的?P293So,estimatey=b0+b1x1+…+bkxk+d1?2+d1?3+errorandtest所以,估計(jì)y=b0+b1x1+…+bkxk+d1?2+d1?3+error,并檢驗(yàn)。H0:d1=0,d2=0,usingFstatisticorLMstatistic.H0:d1=0,d2=0,用F統(tǒng)計(jì)量或LM統(tǒng)計(jì)量。17Ramsey’sRESET
Ramsey回歸設(shè)定誤差檢驗(yàn)AsignificantFstatisticsuggestssomesortoffunctionalformproblem.一個顯著的F統(tǒng)計(jì)量說明函數(shù)形式可能存在問題。ThedistributionofFisapproximatelyF2,n-k-3inlargesamplesunderthenullhypothesisandtheG-Massumptions.在零假設(shè)和G-M假定下,F(xiàn)的分布大樣本近似為F2,n-k-3分布。自由度的說明:減少了2個自由度P29318ImplementingRESETinStata
在STATA中實(shí)施RESETSTATAusescommandovtestafterregcommand.STATA在reg命令后,使用ovtest命令。?2,?3,and?4
areusedinstata.STATA使用?2,?3和?4
。regnarr86pcnv
avgsen
tottimeptime86qemp86inc86blackhispan
ovtest
RamseyRESETtestusingpowersofthefittedvaluesofnarr86RESET檢驗(yàn)使用narr86擬合值的冪函數(shù)項(xiàng) Ho:modelhasnoomittedvariablesF(3,2713)=4.19,Prob>F=0.005819ImplementingRESETinStata
在STATA中實(shí)施RESETAnalternativeistospecifytheoption,rhs.一個替代的方法是指定選擇,rhsInthiscasethepowertermsofalltheexplanatoryvariablesinsteadofthefittedvaluesareusedinthetest.在這種情況下,檢驗(yàn)中使用所有解釋變量的冪函數(shù)項(xiàng),而不是擬合值的相應(yīng)項(xiàng)。ovtest,rhs RamseyRESETtestusingpowersoftheindependentvariablesRESET檢驗(yàn)使用解釋變量的冪函數(shù)項(xiàng)Ho:modelhasnoomittedvariablesF(18,2698)=9.73Prob>F=0.000020CautionsinUsingRESET
使用RESET的注意事項(xiàng)RESETisgoodatdetectingmisspecificationsintheformofnonlinearities,notgeneralomittedvariables. RESET在探測非線性形式的函數(shù)誤設(shè)時(shí)很好用,而不是用于檢測一般的遺漏變量。Wooldridge(1995)showsthatRESEThasnopowerfordetectingomittedvariableswhenevertheyhaveexpectationsthatarelinearintheincludedindependentvariables. Wooldridge在1995年證明:當(dāng)被遺漏變量的期望值時(shí)所包含自變量的線性函數(shù)時(shí),RESET無法探測出遺漏變量問題。P294:對RESET作用的正確評價(jià):1.有的認(rèn)為可以檢測遺漏變量和異方差,但是Wooldridge不這樣認(rèn)為21CautioninusingofRESET
使用RESET的注意事項(xiàng)However,iftheomittedvariablehavenonlinearexpectationsinthedependentvariables,asignificantRESETcanindicateomitted-variableproblem. 盡管如此,如果被遺漏變量的期望是自變量的非線性形式時(shí),一個顯著的RESET可以指出遺漏變量問題。AlsonoticethatthedrawbackoftheRESETtestiswhenthenullisrejected,RESETdoesnotsuggestwhattodointhenextstep. 也要注意到,RESET檢驗(yàn)的一個缺陷是,當(dāng)零假設(shè)被拒絕后,它并不能建議我們下一步怎么做。22HousingPriceExample
住房價(jià)格的例子Thisexampleisusedfortwopurposes. 使用這個例子有兩個目的。First,logformscanbebetterindealingwithnonlinearitiesthenusingthelevelvariables. 首先,處理非線性問題時(shí),log形式可能比變量原形式更好。Second,asignificantRESETmayindicatenonlineareffectofomittedvariables,likethevariable“assess”addedinlater. 其次,一個顯著的RESET可能指出被遺漏變量的非線性效應(yīng),比如稍后加入的變量“assess”。23HousingPriceExample
住房價(jià)格的例子Dataused:hprice1.dta,variables使用數(shù)據(jù):hprice1.dta,變量assessassessedvalue,$1000s(評估價(jià),單位:千美元)pricehouseprice,$1000s(房價(jià),單位:千美元)lotsizesizeoflotinsquarefeet(土地的面積,單位:平方英尺)sqrftsizeofhouseinsquarefeet(房屋的面積,單位:平方英尺)bdrmsnumberofbedrooms(臥室數(shù))24HousingPriceExample
住房價(jià)格的例子
P293閱讀
regpricelotsize
sqrft
bdrms
ovtest
RamseyRESETtestusingpowersofthefittedvaluesofprice(RESET檢驗(yàn)用擬合價(jià)格的冪函數(shù)項(xiàng))Ho:modelhasnoomittedvariablesF(3,81)=4.26
Prob>F=0.007625HousingPriceExample:thelogforms
住房價(jià)格的例子:log形式Thelogformdonotrejectthenullofnomisspecificationat5%significancelevel.Log形式的回歸在5%水平上沒有拒絕零假設(shè):沒有函數(shù)形式誤設(shè)。--結(jié)論:第二個模型即對數(shù)模型更好一些。-P293reg
lprice
llotsize
lsqrft
bdrmsovtestRamseyRESETtestusingpowersofthefittedvaluesoflprice
(RESET檢驗(yàn)用lprice擬合值的冪函數(shù)項(xiàng))Ho:modelhasnoomittedvariablesF(3,81)=2.45
Prob>F=0.069226HousingPriceExample:thelogforms
住房價(jià)格的例子:log形式reg
lprice
lassess
llotsize
lsqrft
bdrmsInthisstepvariablelassessisasignificantvariablewitht=6.89.這一步中,變量lassess顯著,t=6.89ovtest
RamseyRESETtestusingpowersofthefittedvaluesoflprice
(RESET檢驗(yàn)使用lprice擬合值的冪函數(shù)項(xiàng))Ho:modelhasnoomittedvariablesF(3,80)=1.11
Prob>F=0.350927HousingPriceExample:thelogforms
住房價(jià)格的例子:log形式Noticetheresultsaredifferentfromthetextbooksince?2,?3,and?4
areusedinstata,insteadof?2,?3
asinthetextbook
. 注意這里的結(jié)果和課本上不同,因?yàn)檎n本上使用?2,?3
,這里stata用的是?2,?3,和
?4
。Youcanreplicatethetextbookresultbyputting?2,?3
intothemainequation,anduseFtesttotesttheirjointsignificances.
你可以通過以下方法得到課本的結(jié)果:向主方程加入?2,?3
,使用F檢驗(yàn)檢驗(yàn)它們的聯(lián)合顯著性。28NonnestedAlternativeTests:MR
非嵌套替代模型的檢驗(yàn):MRP294
-如何檢驗(yàn)非嵌套模型?二種方法:MR方法、DM方法
Whichofthefollowingmodelisbetter?下面哪一個模型更好?MizonandRichard(1986):Constructacomprehensivemodelthatcontainseachmodelasaspecialcaseandthentotesttherestrictionsthatledtoeachofthemodels.
MizonandRichard(1986):
構(gòu)造一個綜合模型,將每個模型都作為一個特殊情況包含其中,然后檢驗(yàn)導(dǎo)致每個模型變的約束。注意:第6章P199曾提出用擬合優(yōu)度監(jiān)測29NonnestedAlternativeTests
非嵌套替代模型的檢驗(yàn)Intheaboveexample,thecomprehensivemodelis在上例中,綜合模型是:
andtest
30NonnestedAlternativeTests:DM
嵌套替代模型的檢驗(yàn):DMDavidsonandMacKinnon(1981):if(9.6)istrue,thenthefittedvaluesfrom(9.7),shouldbeinsignificantin(9.6).DavidsonandMacKinnon(1981):如果(9.6)正確,那么從(9.7)得到的擬合值在(9.6)中應(yīng)當(dāng)不顯著。注意:D-M檢驗(yàn)的思路,是一個t檢驗(yàn)P29431NonnestedAlternativeTests:DM
嵌套替代模型的檢驗(yàn):DMTotest(9.6),wefirstestimatemodel(9.7)byOLStoobtainthefittedvalues.為了檢驗(yàn)(9.6),我們首先通過OLS估計(jì)模型(9.7)以得到擬合值。Putthisfittedvalueasanadditionalexplanatoryvariablein(9.6),usetstatistictotestitssignificance.將得到的擬合值作為另外的解釋變量放到(9.6)中,用t統(tǒng)計(jì)量檢驗(yàn)其顯著性。32TheHousingPriceExample:MR
住房價(jià)格的例子:MRThecompetingmodels:競爭模型是:
(1)
reg
lprice
bdrmscolonialassesslotsize
sqrft(2)reg
lprice
bdrmscoloniallassess
llotsize
lsqrft
Thecombinedregression:組合的回歸:
reg
lpricecolonialbdrmsassesslotsize
sqrft
lassess
llotsize
lsqrft
33TheHousingPriceExample:MR
住房價(jià)格的例子:MRTestingwhether(2)istherightone:檢驗(yàn)(2)是否正確:testassesslotsize
sqrft
F(3,79)=2.92,Prob>F=0.0392Testingwhether(1)istherightone:檢驗(yàn)(1)是否正確: testlassess
llotsize
lsqrftF(3,79)=3.97,Prob>F=0.0108Inclusive.34TheHousingPriceExample:DM
住房價(jià)格的例子:DMTestingwhether(2)istherightone:檢驗(yàn)(2)是否正確:
reg
lpriceassessbdrms
lotsize
sqrftcolonial
predictyl,xb
reg
lprice
lassess
llotsize
lsqrft
bdrmscolonialylThetablebelowshowthatylisaninsignificantvariable.下表顯示yl
不是一個顯著的變量。35
Source|SSdfMSNumberofobs=88-------------+------------------------------F(6,81)=48.11Model|6.2607657361.04346095Prob>F=0.0000Residual|1.7568377981.021689355R-squared=0.7809-------------+------------------------------AdjR-squared=0.7646Total|8.0176035287.092156362RootMSE=.14727
-----------------------------------------------------------------------------
lprice|Coef.Std.Err.tP>|t|[95%Conf.Interval]-------------+---------------------------------------------------------------
lassess|.6762505.33745562.000.048.00481971.347681
llotsize|-.0119247.0419541-0.280.777-.0954003.0715508
lsqrft|-.1258866.1407801-0.890.374-.4059949.1542216
bdrms|.0152289.0245180.620.536-.0335542.0640121colonial|.0243595.0397240.610.541-.0546788.1033977
yl|.4346309.36462431.190.237-.2908571.160119_cons|.3062863.57372220.530.595-.83524091.447813-----------------------------------------------------------------------------36
Source|SSdfMSNumberofobs=88-------------+------------------------------F(6,81)=48.27Model|6.2654426361.04424044Prob>F=0.0000Residual|1.7521608981.021631616R-squared=0.7815-------------+------------------------------AdjR-squared=0.7653Total|8.0176035287.092156362RootMSE=.14708
----------------------------------------------------------------------------
lprice|Coef.Std.Err.tP>|t|[95%Conf.Interval]-------------+--------------------------------------------------------------assess|.0004822.00099150.490.628-.0014906.002455
bdrms|-.0032415.0236591-0.140.891-.0503157.0438326
lotsize|1.48e-061.68e-060.880.381-1.86e-064.83e-06
sqrft|.0000404.00005820.690.489-.0000753.0001562colonial|.0207546.04268410.490.628-.0641735.1056826
ys|.7382357.3435822.150.035.05461531.421856_cons|1.2247571.6193960.760.452-1.9973334.446848----------------------------------------------------------------------------Testingwhether(1)istherightone檢驗(yàn)(1)是否正確:37NonnestedAlternativeTests:Comments
嵌套替代模型的檢驗(yàn):注釋Theaboveexamplefavorsthelogmodel,butitisoftenpossibletoseebothmodelsberejected,orneithermodelberejected.上面的例子偏好log模型,但可能經(jīng)??吹絻蓚€模型都被拒絕,或,沒有一個被拒絕。38NonnestedAlternativeTests:Comments
嵌套替代模型的檢驗(yàn):注釋W(xué)henbotharerejectedMoreworkonspecificationneedstobedone.However,iftheeffectsofkeyindependentvariablesonyarenotverydifferent,thenitdoesnotreallymatterwhichmodelisused.
當(dāng)兩個都被拒絕需要在模型設(shè)定上花更多功夫盡管如此,如果關(guān)鍵解釋變量對y的效應(yīng)差別不是很大,那么用哪個模型關(guān)系不是很大。WhenbotharenotrejectedWecanusetheadjustedR-squaredtochoosebetweenthem.當(dāng)兩個都未被拒絕我們可以用調(diào)整過的R2在它們之間選擇。39ProxyVariablesP295
代理變量
Whatifmodelismisspecifiedbecausenodataisavailableonanimportantxvariable?如果模型誤設(shè)是因?yàn)榈貌坏揭粋€重要解釋變量的數(shù)據(jù),怎么辦?比如人的能力,是一個模糊變量,很難衡量Itmaybepossibletoavoidormitigateomittedvariablebiasbyusingaproxyvariable.可能通過使用一個代理變量避免或減輕遺漏變量偏誤。Aproxyvariableissomethingthatisrelatedtotheunobservedvariablethatwewouldliketocontrolforinouranalysis. 代理變量就是與我們在分析中試圖控制而又觀測不到的變量相關(guān)的變量。注意:引入代理變量的目的是什么?不是檢測beta3,而是為了正確獲取beta1和beta240ProxyVariables
代理變量-代理變量要與原始變量相關(guān)-P29641ProxyVariables
代理變量42ProxyVariables
代理變量43ProxyVariables
代理變量
P296
引入代理變量需要怎樣的條件呢?44ProxyVariables
代理變量P296
45ProxyVariables(continued)
代理變量(續(xù))Whenthesetwoassumptionsaresatisfied,wearerunningregressionsy=(b0+b3d0)+b1x1+b2x2+b3d3x3+(u+b3v3)andhavejustredefinedintercept,errortermx3coefficient.當(dāng)這兩個假設(shè)被滿足,我們作回歸y=(b0+b3d0)+b1x1+b2x2+b3d3x3+(u+b3v3),只要重新定義截距項(xiàng),誤差項(xiàng)和x3系數(shù)。46TheIQExample.reg
lwage
educ
expertenuremarriedsouthurbanblack
Source|SSdfMSNumberofobs=935-------------+------------------------------F(7,927)=44.75Model|41.837761975.97682312Prob>F=0.0000Residual|123.818521927.133569063R-squared=0.2526-------------+------------------------------AdjR-squared=0.2469Total|165.656283934.177362188RootMSE=.36547
----------------------------------------------------------------------------
lwage|Coef.Std.Err.tP>|t|[95%Conf.Interval]-------------+---------------------------------------------------------------
educ|.0654307.006250410.470.000.0531642.0776973
exper|.014043.00318524.410.000.007792.020294tenure|.0117473.0024534.790.000.0069333.0165613married|.1994171.03905025.110.000.1227801.276054south|-.0909036.0262485-3.460.001-.142417-.0393903urban|.1839121.02695836.820.000.1310056.2368185
black|-.1883499.0376666-5.000.000-.2622717-.1144281_cons|5.395497.11322547.650.0005.173295.617704--------------------------------------------------------------------------
47PlottingstandardizedIQagainstStandardizedWage
繪圖:標(biāo)準(zhǔn)化的IQ關(guān)于標(biāo)準(zhǔn)化的工資4849TheRegressionAddingIQ
加入IQ的回歸.reg
lwage
educ
expertenuremarriedsouthurbanblacksdIQ
Source|SSdfMSNumberofobs=935-------------+------------------------------F(8,926)=41.27Model|43.536016185.44200202Prob>F=0.0000Residual|122.120267926.131879338R-squared=0.2628-------------+------------------------------AdjR-squared=0.2564Total|165.656283934.177362188RootMSE=.36315----------------------------------------------------------------------------
lwage|Coef.Std.Err.tP>|t|[95%Conf.Interval]-------------+--------------------------------------------------------------
educ|.0544106.00692857.850.000.0408133.068008
exper|.0141458.00316514.470.000.0079342.0203575tenure|.0113951.00243944.670.000.0066077.0161825married|.1997644.03880255.150.000.1236134.2759154south|-.0801695.0262529-3.050.002-.1316916-.0286473urban|.1819463.02679296.790.000.1293645.2345281
black|-.1431253.0394925-3.620.000-.2206304-.0656202
sdIQ|.0535739.01492933.590.000.0242747.0828731_cons|5.536914.119208846.450.0005.3029635.770864----------------------------------------------------------------------------50CautionsinUsingProxyVariables
使用代理變量注意事項(xiàng)
Whenassumptionsarenotsatisfiedwecannotgetconsistentestimators.Sayx3*=d0+d1x1+d2x2+d3x3+v3
Thenweareactuallyestimatingy=(b0+b3d0)+(b1+b3d1)x1+(b2+b3d2)x2+b3d3x3+(u+b3v3)Biaswilldependonsignsofb3anddj當(dāng)假設(shè)不滿足時(shí),我們不能得到無偏、一致的估計(jì)量比如x3*=d0+d1x1+d2x2+d3x3+v3實(shí)際上,我們可以估計(jì)y=(b0+b3d0)+(b1+b3d1)x1+(b2+b3d2)x2+b3d3x3+(u+b3v3)。偏誤方向?qū)⒁蕾囉赽3
和dj的符號。51LaggedDependentVariables
滯后的被解釋變量
P302
Whatifthereareunobservedvariables,andyoucan’tfindreasonableproxyvariables?如果存在不可觀測的變量,并且你又找不到合理的解釋變量,怎么辦?Maybepossibletoincludealaggeddependentvariabletoaccountforomittedvariablesthatcontributetobothpastandcurrentlevelsofy 可以包含一個滯后的被解釋變量,說明同時(shí)影響過去和當(dāng)前y水平的被遺漏變量。Obviously,youmustthinkpastandcurrentyarerelatedforthistomakesense.很顯然的,我們必須認(rèn)為過去和當(dāng)前的y相關(guān),才有意義。52TheCrimeExample
犯罪的例子Variables:變量lcrmrtelog(crimerateper1000persons)(log(以1000人為單位的犯罪率))llawexpclog(lawexpenditure)(log(訴訟費(fèi)用))lcrmrt_1lcrmrtelagged(滯后的lcrmrte
)unemunemploymentrate(失業(yè)率)53TheCrimeExample:WithoutLaggedDependentVariable
犯罪的例子:不包含滯后的被解釋變量.reg
lcrmrte
llawexpc
unemifyear==87Source|SSdfMSNumberofobs=46-------------+------------------------------F(2,43)=1.30Model|.2719871992.1359936Prob>F=0.2824Residual|4.4899821443.104418189R-squared=0.0571-------------+------------------------------AdjR-squared=0.0133Total|4.7619693445.105821541RootMSE=.32314
----------------------------------------------------------------------------
lcrmrte|Coef.Std.Err.tP>|t|[95%Conf.Interval]-------------+--------------------------------------------------------------
llawexpc|.2033652.17265341.180.245-.1448236.5515539
unem|-.0290032.0323387-0.900.375-.0942205.0362141_cons|3.3428991.2505272.670.011.82097215.864826----------------------------------------------------------------------------54TheCrimeExample:WithLaggedDependentVariable
犯罪的例子:包含滯后的被解釋變量.reg
lcrmrte
llawexpclcrmrt_1unem
Source|SSdfMSNumberofobs=46-------------+------------------------------F(3,42)=29.73Model|3.2373284631.07910949Prob>F=0.0000Residual|1.5246408842.036300973R-squared=0.6798-------------+------------------------------AdjR-squared=0.6570Total|4.7619693445.105821541RootMSE=.19053
----------------------------------------------------------------------------
lcrmrte|Coef.Std.Err.tP>|t|[95%Conf.Interval]-----------+----------------------------------------------------------------
llawexpc|-.1395764.1086412-1.280.206-.3588231.0796704lcrmrt_1|1.193923.13209859.040.000.92733711.460508
unem|.008621.01951660.440.661-.0307652.0480072_cons|.0764511.82114330.090.926-1.5806831.733585----------------------------------------------------------------------------55MeasurementError
測量誤差
P392
Sometimeswehavethevariablewewant,butwethinkitismeasuredwitherror有時(shí),我們有需要的變量,但我們認(rèn)為它的測量存在誤差。Examples:Asurveyaskshowmanyhoursdidyouworkoverthelastyear,orhowmanyweeksyouusedchildcarewhenyourchildwasyoung例子:一個調(diào)查問你在過去的一年中工作了多少小時(shí),或當(dāng)你的孩子小時(shí),你照看孩子用了多少周。Measurementerrorinydifferentfrommeasurementerrorinxy的測量誤差與x的測量誤差不同。56MeasurementErrorinaDependentVariable
被解釋變量的測量誤差
Lety*bethevariableofourinterest,butyisitsreportedvalue.Definemeasurementerrorase0=y–y*令y*為我們感興趣的變量,但y是它的報(bào)告值。定義測量誤差為e0=y–y*
。Themodely=b0+b1x1+…+bkxk+u+e0isestimated.估計(jì)的模型y=b0+b1x1+…+bkxk+u+e0
WhenwillOLSproduceunbiasedresults?什么時(shí)候OLS產(chǎn)生有偏的結(jié)果?57MeasurementErrorinaDependentVariable
被解釋變量的測量誤差I(lǐng)fe0andxj,uareuncorrelated,theresultsisunbiased.如果e0和xj,u不相關(guān),結(jié)果無偏。IfE(e0)≠0thenb0willbebiased,though如果E(e0)≠0,那么b0有偏。Whileunbiased,wefacelargervariancesthanwithnomeasurementerror當(dāng)無偏時(shí),我們要比沒有測量誤差時(shí)面臨更大的方差。見P303公式結(jié)論:1、當(dāng)e與資本了相關(guān)時(shí),導(dǎo)致有偏性,2、無關(guān)時(shí),只增大方差,模型還是合適的58MeasurementErrorinanExplanatoryVariable
解釋變量的測量誤差
Wewishtoestimatey=b0+b1x1*+u.
我們希望估計(jì)y=b0+b1x1*+u。Definemeasurementerrorase1=x1–x1*.定義測量誤差為e1=x1–x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度緊急避難場所標(biāo)示牌設(shè)計(jì)與施工合同3篇
- 2024物業(yè)服務(wù)合同補(bǔ)充:社區(qū)物業(yè)智能化改造協(xié)議3篇
- 2024水廠給排水設(shè)備采購與維護(hù)服務(wù)合同
- 腦梗死健康宣教
- 2024年水利樞紐建設(shè)勞務(wù)承包合同
- 專業(yè)個人道路運(yùn)輸協(xié)議樣式2024
- 2024年財(cái)產(chǎn)質(zhì)押擔(dān)保合同模板6篇
- 福建省南平市萬安中學(xué)2022年高一生物下學(xué)期期末試題含解析
- 色彩之旅模板
- 青春期健康守護(hù)
- GB/T 44890-2024行政許可工作規(guī)范
- 二年級下冊加減混合豎式練習(xí)360題附答案
- (完整版)四年級上冊數(shù)學(xué)豎式計(jì)算題100題直接打印版
- 音樂常識知識考試題庫(300題版)
- 酵素行業(yè)分析研究報(bào)告
- 股東變更情況報(bào)告表
- 房產(chǎn)中介門店6S管理規(guī)范
- 蘇教版五年級數(shù)學(xué)下冊解方程五種類型50題
- 部編人教版九年級語文上冊全冊課后教學(xué)反思匯總
- (完整版)居家養(yǎng)老服務(wù)項(xiàng)目收費(fèi)標(biāo)準(zhǔn)一覽表
- 玻璃瓶罐的缺陷產(chǎn)生原因及解決方法63699
評論
0/150
提交評論