




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E;B、E是半圓弧的三等分點(diǎn),的長(zhǎng)為,則圖中陰影部分的面積為()A. B. C. D.2.如圖,拋物線的對(duì)稱軸為,且過點(diǎn),有下列結(jié)論:①>0;②>0;③;④>0.其中正確的結(jié)論是()A.①③ B.①④ C.①② D.②④3.二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是()A. B. C. D.4.已知分式的值為0,則的值是().A. B. C. D.5.如圖,三個(gè)邊長(zhǎng)均為的正方形重疊在一起,、是其中兩個(gè)正方形對(duì)角線的交點(diǎn),則兩個(gè)陰影部分面積之和是()A. B. C. D.6.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件,全組共互增了182件.如果全組共有x名同學(xué),則根據(jù)題意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×27.如圖,在菱形中,已知,,以為直徑的與菱形相交,則圖中陰影部分的面積為()A. B. C. D.8.成語“水中撈月”所描述的事件是().A.必然事件 B.隨機(jī)事件 C.不可能事件 D.無法確定9.已知反比例函數(shù)y=的圖象如圖所示,則二次函數(shù)y=ax2-2x和一次函數(shù)y=bx+a在同一平面直角坐標(biāo)系中的圖象可能是()A. B. C. D.10.若一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(﹣2,0),則拋物線y=ax2+bx的對(duì)稱軸為()A.直線x=1 B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣411.在平面直角坐標(biāo)系中,若干個(gè)半徑為1的單位長(zhǎng)度,圓心角為60°的扇形組成一條連續(xù)的曲線,點(diǎn)P從原點(diǎn)O出發(fā),向右沿這條曲線做上下起伏運(yùn)動(dòng)(如圖),點(diǎn)P在直線上運(yùn)動(dòng)的速度為每1個(gè)單位長(zhǎng)度.點(diǎn)P在弧線上運(yùn)動(dòng)的速度為每秒個(gè)單位長(zhǎng)度,則2019秒時(shí),點(diǎn)P的坐標(biāo)是()A. B.C. D.12.已知一組數(shù)據(jù):-1,0,1,2,3是它的一個(gè)樣本,則這組數(shù)據(jù)的平均值大約是()A.5 B.1 C.-1 D.0二、填空題(每題4分,共24分)13.如圖,在等邊三角形ABC中,AC=9,點(diǎn)O在AC上,且AO=3,點(diǎn)P是AB上的一動(dòng)點(diǎn),連接OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到線段OD,要使點(diǎn)D恰好落在BC上,則AP的長(zhǎng)是________.14.在Rt△ABC中,∠C是直角,sinA=,則cosB=__________15.在平面直角坐標(biāo)系中,點(diǎn)P(5,﹣3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是___.16.若點(diǎn)A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函數(shù)的圖象上,則y1、y2、y3的大小關(guān)系是_________.17.編號(hào)為2,3,4,5,6的乒乓球放在不透明的袋內(nèi),從中任抽一個(gè)球,抽中編號(hào)是偶數(shù)的概率是___.18.若關(guān)于x的方程=0是一元二次方程,則a=____.三、解答題(共78分)19.(8分)已知:在平面直角坐標(biāo)系中,拋物線()交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為直線x=-2.(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:探究一:如圖1,設(shè)△PAD的面積為S,令W=t·S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.20.(8分)解方程:x2﹣x=3﹣x221.(8分)四張大小、質(zhì)地均相同的卡片上分別標(biāo)有數(shù)字1,2,3,4,現(xiàn)將標(biāo)有數(shù)字的一面朝下扣在桌子上,從中隨機(jī)抽取一張(不放回),再從桌子上剩下的3張中隨機(jī)抽取第二張.(1)用畫樹狀圖的方法,列出前后兩次抽得的卡片上所標(biāo)數(shù)字的所有可能情況;(2)計(jì)算抽得的兩張卡片上的數(shù)字之積為奇數(shù)的概率是多少?22.(10分)解下列方程:(1)x2﹣2x﹣2=0;(2)(x﹣1)(x﹣3)=1.23.(10分)定義:如果一個(gè)三角形中有兩個(gè)內(nèi)角α,β滿足α+2β=90°,那我們稱這個(gè)三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點(diǎn)E(異于點(diǎn)D),使得△BCE也是“近直角三角形”?若存在,請(qǐng)求出CE的長(zhǎng);若不存在,請(qǐng)說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點(diǎn)D為AC邊上一點(diǎn),以BD為直徑的圓交BC于點(diǎn)E,連結(jié)AE交BD于點(diǎn)F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.24.(10分)如圖,在中,AC=4,CD=2,BC=8,點(diǎn)D在BC邊上,(1)判斷與是否相似?請(qǐng)說明理由.(2)當(dāng)AD=3時(shí),求AB的長(zhǎng)25.(12分)華聯(lián)超市準(zhǔn)備代銷一款運(yùn)動(dòng)鞋,每雙的成本是170元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是200元時(shí),每天的銷售量是40雙,而銷售單價(jià)每降低1元,每天就可多售出5雙,設(shè)每雙降低x元(x為正整數(shù)),每天的銷售利潤(rùn)為y元.(1)求y與x的函數(shù)關(guān)系式;(2)每雙運(yùn)動(dòng)鞋的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?26.在一次籃球拓展課上,,,三人玩籃球傳球游戲,游戲規(guī)則是:每一次傳球由三人中的一位將球隨機(jī)地傳給另外兩人中的某一人.例如:第一次由傳球,則將球隨機(jī)地傳給,兩人中的某一人.(1)若第一次由傳球,求兩次傳球后,球恰好回到手中的概率.(要求用畫樹狀圖法或列表法)(2)從,,三人中隨機(jī)選擇一人開始進(jìn)行傳球,求兩次傳球后,球恰好在手中的概率.(要求用畫樹狀圖法或列表法)
參考答案一、選擇題(每題4分,共48分)1、D【分析】連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點(diǎn)求出圓心角∠BOD的度數(shù),再利用弧長(zhǎng)公式求出半圓的半徑R,再利用圓周角定理求出各邊長(zhǎng),通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點(diǎn),∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長(zhǎng)為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點(diǎn)睛】本題主要考查弧長(zhǎng)公式,扇形面積公式,圓周角定理等,掌握?qǐng)A的相關(guān)性質(zhì)是解題的關(guān)鍵.2、C【分析】根據(jù)拋物線的開口方向、對(duì)稱軸、與y軸的交點(diǎn)判定系數(shù)符號(hào)及運(yùn)用一些特殊點(diǎn)解答問題.【詳解】由拋物線的開口向下可得:a<0,
根據(jù)拋物線的對(duì)稱軸在y軸左邊可得:a,b同號(hào),所以b<0,
根據(jù)拋物線與y軸的交點(diǎn)在正半軸可得:c>0,
∴abc>0,故①正確;
直線x=-1是拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸,所以-=-1,可得b=2a,
a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,
∴-3a>0,
∴-3a+4c>0,
即a-2b+4c>0,故②正確;
∵b=2a,a+b+c<0,
∴2a+b≠0,故③錯(cuò)誤;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④錯(cuò)誤;
故選:C.【點(diǎn)睛】此題考查二次函數(shù)圖象與系數(shù)的關(guān)系,掌握二次函數(shù)的性質(zhì)、靈活運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵,解答時(shí),要熟練運(yùn)用拋物線的對(duì)稱性和拋物線上的點(diǎn)的坐標(biāo)滿足拋物線的解析式.3、B【分析】根據(jù)二次函數(shù)的性質(zhì),用配方法求出二次函數(shù)頂點(diǎn)式,再得出頂點(diǎn)坐標(biāo)即可.【詳解】解:∵拋物線
=(x+1)2+3
∴拋物線的頂點(diǎn)坐標(biāo)是:(?1,3).
故選B.【點(diǎn)睛】此題主要考查了利用配方法求二次函數(shù)頂點(diǎn)式以及求頂點(diǎn)坐標(biāo),此題型是考查重點(diǎn),應(yīng)熟練掌握.4、D【分析】分析已知和所求,根據(jù)分式值為0的條件為:分子為0而分母不為0,不難得到=0且≠0;根據(jù)ab=0,a=0或b=0,即可解出x的值,再根據(jù)≠0,即可得到x的取值范圍,由此即得答案.【詳解】∵的值為0∴=0且≠0.解得:x=3.故選:D.【點(diǎn)睛】考核知識(shí)點(diǎn):分式值為0.理解分式值為0的條件是關(guān)鍵.5、A【分析】連接AN,CN,通過將每部分陰影的面積都轉(zhuǎn)化為正方形ACFE的面積的,則答案可求.【詳解】如圖,連接AN,CN∵四邊形ACFE是正方形∴∵,∴∴∴所以四邊形BCDN的面積為正方形ACFE的面積的同理可得另一部分陰影的面積也是正方形ACFE的面積的∴兩部分陰影部分的面積之和為正方形ACFE的面積的即故選A【點(diǎn)睛】本題主要考查不規(guī)則圖形的面積,能夠利用全等三角形對(duì)面積進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.6、C【解析】試題分析:先求每名同學(xué)贈(zèng)的標(biāo)本,再求x名同學(xué)贈(zèng)的標(biāo)本,而已知全組共互贈(zèng)了182件,故根據(jù)等量關(guān)系可得到方程.每名同學(xué)所贈(zèng)的標(biāo)本為:(x-1)件,那么x名同學(xué)共贈(zèng):x(x-1)件,根據(jù)題意可列方程:x(x-1)=182,故選C.考點(diǎn):本題考查的是根據(jù)實(shí)際問題列一元二次方程點(diǎn)評(píng):找到關(guān)鍵描述語,找到等量關(guān)系,然后準(zhǔn)確的列出方程是解答本題的關(guān)鍵.7、D【分析】根據(jù)菱形與的圓的對(duì)稱性到△AOE為等邊三角形,故可利用扇形AOE的面積減去△AOE的面積得到需要割補(bǔ)的面積,再利用圓的面積減去4倍的需要割去的面積即可求解.【詳解】∵菱形中,已知,,連接AO,BO,∴∠ABO=30°,∠AOB=90°,∴∠BAO=60°,又AO=EO,∴△AOE為等邊三角形,故AE=EO=AB=2∴r=2∴S扇形AOE==S△AOE===∴圖中陰影部分的面積=×22-4(-)=故選D.【點(diǎn)睛】本題考查的是扇形面積計(jì)算、菱形的性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.8、C【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念進(jìn)行解答即可.【詳解】水中撈月是不可能事件.故選C.【點(diǎn)睛】本題考查了必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、C【分析】先根據(jù)拋物線y=ax2-2x過原點(diǎn)排除A,再由反比例函數(shù)圖象確定ab的符號(hào),再由a、b的符號(hào)和拋物線對(duì)稱軸確定拋物線與直線y=bx+a的位置關(guān)系,進(jìn)而得解.【詳解】∵當(dāng)x=0時(shí),y=ax2-2x=0,即拋物線y=ax2-2x經(jīng)過原點(diǎn),故A錯(cuò)誤;∵反比例函數(shù)y=的圖象在第一、三象限,∴ab>0,即a、b同號(hào),當(dāng)a<0時(shí),拋物線y=ax2-2x的對(duì)稱軸x=<0,對(duì)稱軸在y軸左邊,故D錯(cuò)誤;當(dāng)a>0時(shí),b>0,直線y=bx+a經(jīng)過第一、二、三象限,故B錯(cuò)誤;C正確.故選C.【點(diǎn)睛】本題主要考查了一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖象與性質(zhì),根據(jù)函數(shù)圖象與系數(shù)的關(guān)系進(jìn)行判斷是解題的關(guān)鍵,同時(shí)考查了數(shù)形結(jié)合的思想.10、C【解析】∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(﹣2,0),∴﹣2a+b=0,即b=2a.∴拋物線y=ax2+bx的對(duì)稱軸為直線.故選C.11、B【分析】設(shè)第n秒運(yùn)動(dòng)到Pn(n為自然數(shù))點(diǎn),根據(jù)點(diǎn)P的運(yùn)動(dòng)規(guī)律找出部分Pn點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此規(guī)律即可得出結(jié)論.【詳解】解:設(shè)第n秒運(yùn)動(dòng)到Pn(n為自然數(shù))點(diǎn),觀察,發(fā)現(xiàn)規(guī)律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019為(,﹣),故答案為B.【點(diǎn)睛】本題考查了規(guī)律型中的點(diǎn)的坐標(biāo),解題的關(guān)鍵是找出變化規(guī)律并根據(jù)規(guī)律找出點(diǎn)的坐標(biāo).12、B【分析】根據(jù)平均數(shù)的定義計(jì)算即可.【詳解】這組數(shù)據(jù)的平均數(shù)為(﹣1+0+1+2+3)÷5=1.故選:B.【點(diǎn)睛】本題考查了平均數(shù).掌握平均數(shù)的求法是解答本題的關(guān)鍵.二、填空題(每題4分,共24分)13、6【解析】由題意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP與△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案為6.14、【分析】由題意直接運(yùn)用直角三角形的邊角間關(guān)系進(jìn)行分析計(jì)算即可求解得出結(jié)論.【詳解】解:如圖,解:在Rt△ABC中,∵∠C是直角,∴,又∵,∴.【點(diǎn)睛】本題考查直角三角形的邊角關(guān)系,熟練掌握正弦和余弦所對(duì)應(yīng)的邊角關(guān)系是解題的關(guān)鍵.15、(﹣5,3)【詳解】解:關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是橫、縱坐標(biāo)都互為相反數(shù),從而點(diǎn)P(5,﹣3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(﹣5,3).故答案為:(﹣5,3).16、y2>y1>y1【分析】根據(jù)反比例函數(shù)的圖象和性質(zhì),即可得到答案.【詳解】∵反比例函數(shù)的比例系數(shù)k<0,∴在每一個(gè)象限內(nèi),y隨x的增大而增大,∵點(diǎn)A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函數(shù)的圖象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【點(diǎn)睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),掌握反比例函數(shù)的增減性,是解題的關(guān)鍵.17、.【解析】直接利用概率公式求解可得.【詳解】在這5個(gè)乒乓球中,編號(hào)是偶數(shù)的有3個(gè),所以編號(hào)是偶數(shù)的概率為,故答案為:.【點(diǎn)睛】本題考查了概率公式,關(guān)鍵是掌握隨機(jī)事件的概率事件可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).18、﹣1.【分析】根據(jù)一元二次方程的定義得到由此可以求得a的值.【詳解】解:∵關(guān)于x的方程(a﹣1)xa2+1﹣7=0是一元二次方程,∴a2+1=2,且a﹣1≠0,解得,a=﹣1.故答案為﹣1.【點(diǎn)睛】本題考查了一元二次方程的概念.只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).三、解答題(共78分)19、(1),D(-2,4).(2)①當(dāng)t=3時(shí),W有最大值,W最大值=1.②存在.只存在一點(diǎn)P(0,2)使Rt△ADP與Rt△AOC相似.【解析】(1)由拋物線的對(duì)稱軸求出a,就得到拋物線的表達(dá)式了;
(2)①下面探究問題一,由拋物線表達(dá)式找出A,B,C三點(diǎn)的坐標(biāo),作DM⊥y軸于M,再由面積關(guān)系:SPAD=S梯形OADM-SAOP-SDMP得到t的表達(dá)式,從而W用t表示出來,轉(zhuǎn)化為求最值問題.
②難度較大,運(yùn)用分類討論思想,可以分三種情況:
(1)當(dāng)∠P1DA=90°時(shí);(2)當(dāng)∠P2AD=90°時(shí);(3)當(dāng)AP3D=90°時(shí)。【詳解】解:(1)∵拋物線y=ax2-x+3(a≠0)的對(duì)稱軸為直線x=-2.∴D(-2,4).(2)探究一:當(dāng)0<t<4時(shí),W有最大值.
∵拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
當(dāng)0<t<4時(shí),作DM⊥y軸于M,
則DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=t(12-2t)=-2(t-3)2+1
∴當(dāng)t=3時(shí),W有最大值,W最大值=1.
探究二:
存在.分三種情況:
①當(dāng)∠P1DA=90°時(shí),作DE⊥x軸于E,則OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y軸,OA⊥y軸,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,此時(shí)又因?yàn)椤螦OC=∠P1DA=90°,
∴Rt△ADP1∽R(shí)t△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴當(dāng)∠P1DA=90°時(shí),存在點(diǎn)P1,使Rt△ADP1∽R(shí)t△AOC,
此時(shí)P1點(diǎn)的坐標(biāo)為(0,2)
②當(dāng)∠P2AD=90°時(shí),則∠P2AO=45°,∴△P2AD與△AOC不相似,此時(shí)點(diǎn)P2不存在.③當(dāng)∠AP3D=90°時(shí),以AD為直徑作⊙O1,則⊙O1的半徑圓心O1到y(tǒng)軸的距離d=4.
∵d>r,
∴⊙O1與y軸相離.
不存在點(diǎn)P3,使∠AP3D=90度.
∴綜上所述,只存在一點(diǎn)P(0,2)使Rt△ADP與Rt△AOC相似.20、x=或x=-1.【分析】根據(jù)因式分解法即可求出答案.【詳解】原方程化為2x2-x-3=0,∴(2x-3)(x+1)=0,∴x=或x=-1.【點(diǎn)睛】本題考查一元二次方程,解題的關(guān)鍵是熟練運(yùn)用一元二次方程的解法,本題屬于基礎(chǔ)題型.21、(1)見解析(2)P(積為奇數(shù))=【分析】(1)用樹狀圖列舉出2次不放回實(shí)驗(yàn)的所有可能情況即可;(2)看是奇數(shù)的情況占所有情況的多少即可.【詳解】(1)(2)P(積為奇數(shù))=22、(1)x1=+1,x2=﹣+1;(2)x1=5,x2=﹣1【分析】(1)用配方法解方程;(2)先化簡(jiǎn)為一元二次方程的一般形式,再用因式分解法解方程.【詳解】解:⑴x2-2x+1=3,(x-1)2=3,x-1=±,,;⑵x2-x-3x+3=1x2-4x-5=0(x-5)(x+1)=0x1=5,x2=-1【點(diǎn)睛】本題考查用配方法和因式分解法解一元二次方程.用因式分解法解一元二次方程的一般步驟是:①移項(xiàng),將方程的右邊化為0;②化積,把方程左邊因式分解,化成兩個(gè)一次因式的積;③轉(zhuǎn)化,令每個(gè)因式都等于零,轉(zhuǎn)化為兩個(gè)一元一次方程;④求解,解這兩個(gè)一元一次方程,它們的解就是原方程的解.23、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時(shí),設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當(dāng)∠ABD=∠C=β時(shí),AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點(diǎn)H是BE的中點(diǎn),則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點(diǎn)E(異于點(diǎn)D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時(shí),則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點(diǎn)A作AH⊥BC于點(diǎn)H,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當(dāng)∠ABD=∠C=β時(shí),過點(diǎn)A作AH⊥BE交BE于點(diǎn)H,交BD于點(diǎn)G,則點(diǎn)G是圓的圓心(BE的中垂線與直徑的交點(diǎn)),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 常用數(shù)據(jù)處理方法歸納試題及答案
- 咖啡師的社交能力與職業(yè)發(fā)展試題及答案
- 2024年職業(yè)生涯規(guī)劃中的統(tǒng)計(jì)學(xué)應(yīng)用試題及答案
- 2024年食品安全員考試全景式思考試題與答案
- 2024年秘書證考試心理素質(zhì)試題及答案
- 完整的建筑法規(guī)知識(shí)與試題及答案
- 多媒體應(yīng)用設(shè)計(jì)師市場(chǎng)分析及試題答案
- 2024年食品安全員考試全面策略試題及答案
- 2024年食品安全員考生經(jīng)驗(yàn)分享試題及答案
- 檔案管理相關(guān)法律知識(shí)試題及答案
- 2025年寧波職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年常考版參考題庫含答案解析
- 2024版射箭館會(huì)員訓(xùn)練協(xié)議3篇
- 《新能源汽車滾裝運(yùn)輸安全技術(shù)指南》2022
- 品管圈FOCUS-PDCA案例-神經(jīng)外科提高腦卒中偏癱患者良肢位擺放合格率
- 常用消毒劑的分類、配制及使用課件演示幻燈片
- GB 45069-2024懸崖秋千安全技術(shù)要求
- 員工反恐怖協(xié)議
- 南京理工大學(xué)泰州科技學(xué)院《電力電子技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2025年高考政治一輪復(fù)習(xí)知識(shí)清單必修四《哲學(xué)與文化》重難點(diǎn)知識(shí)
- 球隊(duì)冠名合同范例
- 12萬噸年丁二烯抽提裝置、10-3萬噸年MTBE-丁烯-1裝置總承包工程施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論