2023屆江蘇省金壇市數學九上期末聯(lián)考試題含解析_第1頁
2023屆江蘇省金壇市數學九上期末聯(lián)考試題含解析_第2頁
2023屆江蘇省金壇市數學九上期末聯(lián)考試題含解析_第3頁
2023屆江蘇省金壇市數學九上期末聯(lián)考試題含解析_第4頁
2023屆江蘇省金壇市數學九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在一個不透明的袋子中,裝有紅球、黃球、籃球、白球各1個,這些球除顏色外無其他差別,從袋中隨機取出一個球,取出紅球的概率為()A.

B.

C.

D.12.小明從圖所示的二次函數的圖象中,觀察得出了下面四條信息:①;②<0;③;④方程必有一個根在-1到0之間.你認為其中正確信息的個數有()A.1個 B.2個 C.3個 D.4個3.小馬虎在計算16-x時,不慎將“-”看成了“+”,計算的結果是17,那么正確的計算結果應該是()A.15 B.13 C.7 D.4.用配方法解方程,配方后得到的方程是()A. B. C. D.5.從下列直角三角板與圓弧的位置關系中,可判斷圓弧為半圓的是()A. B.C. D.6.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結論:①該拋物線的對稱軸在y軸左側;②關于x的方程ax2+bx+c+2=0無實數根;③a﹣b+c≥0;④的最小值為1.其中,正確結論的個數為()A.1個 B.2個 C.1個 D.4個7.在一個不透明的布袋中有紅色、黑色的球共10個,它們除顏色外其余完全相同.小娟通過多次摸球試驗后發(fā)現(xiàn)其中摸到黑球的頻率穩(wěn)定在60%附近,則口袋中黑球的個數很可能是()A.4 B.5 C.6 D.78.一副三角尺按如圖的位置擺放(頂點C與F重合,邊CA與邊FE重合,頂點B、C、D在一條直線上).將三角尺DEF繞著點F按逆時針方向旋轉n°后(0<n<180),如果BA∥DE,那么n的值是()A.105 B.95 C.90 D.759.如圖,某超市自動扶梯的傾斜角為,扶梯長為米,則扶梯高的長為()A.米 B.米 C.米 D.米10.拋物線的部分圖象如圖所示,當時,x的取值范圍是()A.x>2或x<-3 B.-3<x<2C.x>2或x<-4 D.-4<x<211..以3、4為兩邊長的三角形的第三邊長是方程x2-13x+40=0的根,則這個三角形的周長為()A.15或12 B.12 C.15 D.以上都不對12.已知a是方程x2+3x﹣1=0的根,則代數式a2+3a+2019的值是()A.2020 B.﹣2020 C.2021 D.﹣2021二、填空題(每題4分,共24分)13.在相同時刻,物高與影長成正比.在某一晴天的某一時刻,某同學測得他自己的影長是2.4m,學校旗桿的影長為13.5m,已知該同學的身高是1.6m,則學校旗桿的高度是_____.14.瑞士中學教師巴爾末成功的從光譜數據:,……中得到巴爾末公式,從而打開光譜奧妙的大門.請你根據以上光譜數據的規(guī)律寫出它的第七個數據___.15.在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉60°,頂點C運動的路線長是(結果保留π).16.如圖,是的中線,點在延長線上,交的延長線于點,若,則___________.17.如圖,平面直角坐標系中,已知O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O順時針旋轉,每次旋轉90°,測第70次旋轉結束時,點D的坐標為_____.18.如圖,在平面直角坐標系中,已知點E(﹣4,2),F(xiàn)(﹣1,﹣1).以原點O為位似中心,把△EFO擴大到原來的2倍,則點E的對應點E'的坐標為_____.三、解答題(共78分)19.(8分)如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(A在B的左側),與y軸交于點C(0,﹣3),對稱軸為x=1,點D與C關于拋物線的對稱軸對稱.(1)求拋物線的解析式及點D的坐標;(2)點P是拋物線上的一點,當△ABP的面積是8時,求出點P的坐標;(3)點M為直線AD下方拋物線上一動點,設點M的橫坐標為m,當m為何值時,△ADM的面積最大?并求出這個最大值.20.(8分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網格中,已知點O,A,B均為網格線的交點.(1)在給定的網格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;(2)將線段繞點逆時針旋轉90°得到線段.畫出線段;(3)以為頂點的四邊形的面積是個平方單位.21.(8分)矩形的長和寬分別是4cm,3cm,如果將長和寬都增加xcm,那么面積增加ycm2(1)求y與x之間的關系式.(2)求當邊長增加多少時,面積增加8cm2.22.(10分)解不等式組并求出最大整數解.23.(10分)計算:2cos30°﹣2sin45°+3tan60°+|1﹣|.24.(10分)如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點在BC上,且四邊形AEFD是平行四邊形.(1)AD與BC有何等量關系?請說明理由;(2)當AB=DC時,求證:四邊形AEFD是矩形.25.(12分)為進一步發(fā)展基礎教育,自年以來,某縣加大了教育經費的投入,年該縣投入教育經費萬元.年投入教育經費萬元.假設該縣這兩年投入教育經費的年平均增長率相同.求這兩年該縣投入教育經費的年平均增長率.26.定義:二元一次不等式是指含有兩個未知數(即二元),并且未知數的次數是1次(即一次)的不等式;滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集.如:x+y>3是二元一次不等式,(1,4)是該不等式的解.有序實數對可以看成直角坐標平面內點的坐標.于是二元一次不等式(組)的解集就可以看成直角坐標系內的點構成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四個點,請在直角坐標系中標出這四個點,這四個點中是x﹣y﹣2≤0的解的點是.(2)設的解集在坐標系內所對應的點形成的圖形為G.①求G的面積;②P(x,y)為G內(含邊界)的一點,求3x+2y的取值范圍;(3)設的解集圍成的圖形為M,直接寫出拋物線y=x2+2mx+3m2﹣m﹣1與圖形M有交點時m的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、C【詳解】解:∵共有4個球,紅球有1個,∴摸出的球是紅球的概率是:P=.故選C.【點睛】本題考查概率公式.2、C【詳解】觀察圖象可知,拋物線的對稱軸為x=,即,所以2a+3b=0,即①正確;二次函數的圖象與x軸有兩個交點,所以>0,②錯誤;由圖象可知,當x=-1時,y>0,即a-b+c>0,③正確;由圖象可知,二次函數的圖象與x軸的一個交點在0和-1之間,所以方程必有一個根在-1到0之間,④正確.正確的結論有3個,故選C.【點睛】本題主要考查了圖象與二次函數系數之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.3、A【詳解】試題分析:由錯誤的結果求出x的值,代入原式計算即可得到正確結果.解:根據題意得:16+x=17,解得:x=3,則原式=16﹣x=16﹣1=15,故選A考點:解一元一次方程.4、A【分析】將方程的一次項移到左邊,兩邊加上4變形后,即可得到結果.【詳解】解:方程移項得:x2?4x=1,

配方得:x2?4x+4=1,

即(x?2)2=1.

故選A.【點睛】本題考查了用配方法解一元二次方程,解題的關鍵是熟記完全平方公式.5、B【分析】根據圓周角定理(直徑所對的圓周角是直角)求解,即可求得答案.【詳解】∵直徑所對的圓周角等于直角,∴從直角三角板與圓弧的位置關系中,可判斷圓弧為半圓的是B.故選B.【點睛】本題考查了圓周角定理.此題比較簡單,注意掌握數形結合思想的應用.6、D【解析】本題考察二次函數的基本性質,一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側,故①正確;∵拋物線與軸最多有一個交點,∴∴關于的方程中∴關于的方程無實數根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關鍵是熟悉函數的系數之間的關系,二次函數和一元二次方程的關系,難點是第四問的證明,要考慮到不等式的轉化.7、C【分析】根據題意得出摸出黑球的頻率,繼而根據頻數=總數×頻率計算即可.【詳解】∵小娟通過多次摸球試驗后發(fā)現(xiàn)其中摸到黑球的頻率穩(wěn)定在60%附近,∴口袋中黑球的個數可能是10×60%=6個.故選:C.【點睛】本題主要考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數與總情況數之比.8、A【分析】畫出圖形求解即可.【詳解】解:∵三角尺DEF繞著點F按逆時針方向旋轉n°后(0<n<180),BA∥DE,∴旋轉角=90°+45°﹣30°=105°,故選:A.【點睛】本題考查了旋轉變換,平行線的性質等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考??碱}型.9、A【詳解】解:由題意,在Rt△ABC中,∠ABC=31°,由三角函數關系可知,

AC=AB?sinα=9sin31°(米).

故選A.【點睛】本題主要考查了三角函數關系在直角三角形中的應用.10、C【分析】先根據對稱軸和拋物線與x軸的交點求出另一交點;再根據開口方向,結合圖形,求出y<0時,x的取值范圍.【詳解】解:因為拋物線過點(2,0),對稱軸是x=-1,

根據拋物線的對稱性可知,拋物線必過另一點(-1,0),

因為拋物線開口向下,y<0時,圖象在x軸的下方,

此時,x>2或x<-1.

故選:C.【點睛】本題考查了拋物線與x軸的交點,解題的關鍵是利用二次函數的對稱性,判斷圖象與x軸的交點,根據開口方向,形數結合,得出結論.11、B【解析】試題分析:將方程進行因式分解可得:(x-5)(x-8)=0,解得:x=5或x=8,根據三角形三邊關系可得:這個三角形的第三邊長為5,則周長為:3+4+5=1.考點:(1)解一元二次方程;(2)三角形三邊關系12、A【分析】根據一元二次方程的解的定義,將a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【詳解】解:根據題意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故選:A.【點睛】此題考查的是一元二次方程的解,掌握一元二次方程解的定義是解決此題的關鍵二、填空題(每題4分,共24分)13、9米【分析】由題意根據物高與影長成比例即旗桿的高度:13.5=1.6:2.4,進行分析即可得出學校旗桿的高度.【詳解】解:∵物高與影長成比例,∴旗桿的高度:13.5=1.6:2.4,∴旗桿的高度==9米.故答案為:9米.【點睛】本題考查相似三角形的應用,解題的關鍵是理解題意,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程并通過解方程求出旗桿的高度.14、【分析】分子的規(guī)律依次是,32,42,52,62,72,82,92…,分母的規(guī)律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七個數據是.【詳解】解:由數據可得規(guī)律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七個數據是.【點睛】主要考查了學生的分析、總結、歸納能力,規(guī)律型的習題一般是從所給的數據和運算方法進行分析,從特殊值的規(guī)律上總結出一般性的規(guī)律.15、.【解析】試題分析:將△ABC繞點B旋轉60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉的弧,根據弧長公式即可求得.試題解析:∵AB=4,∴BC=2,所以弧長=.考點:1.弧長的計算;2.旋轉的性質.16、5【分析】過D點作DH∥AE交EF于H點,證△BDH∽△BCE,△FDH∽△FAE,根據對應邊成比例即可求解.【詳解】過D點作DH∥AE交EF于H點,∴∠BDH=∠BCE,∠BHD=∠BEC,∴△BDH∽△BCE同理可證:△FDH∽△FAE∵AD是△ABC的中線∴BD=DC∴又∴∴∴故答案為:5【點睛】本題考查的是相似三角形,找到兩隊相似三角形之間的聯(lián)系是關鍵.17、(3,﹣10)【分析】首先根據坐標求出正方形的邊長為6,進而得到D點坐標,然后根據每旋轉4次一個循環(huán),可知第70次旋轉結束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉2次,每次旋轉90°,即可得出此時D點坐標.【詳解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四邊形ABCD為正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一個循環(huán),第70次旋轉結束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉2次,每次旋轉90°,此時D點與(﹣3,10)關于原點對稱,∴此時點D的坐標為(3,﹣10).故答案為:(3,﹣10).【點睛】本題考查坐標與圖形,根據坐標求出D點坐標,并根據旋轉特點找出規(guī)律是解題的關鍵.18、(﹣8,4),(8,﹣4)【分析】根據在平面直角坐標系中,位似變換的性質計算即可.【詳解】解:以原點O為位似中心,把△EFO擴大到原來的2倍,點E(﹣4,2),∴點E的對應點E'的坐標為(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案為:(﹣8,4),(8,﹣4).【點睛】本題考查的是位似變換的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.三、解答題(共78分)19、(2)y=x2﹣2x﹣3,D(2,﹣3);(2)P(2﹣2,4)或(2+2,4)或(2,﹣4);(3)m=時,△AMD的最大值為【分析】(2)由拋物線y=x2+bx+c的對稱軸為x=2,求出b的值,再由點C的坐標求出c的值即可;(2)先求出點A,點B的坐標,設點P的坐標為(s,t),因為△ABP的面積是8,根據三角形的面積公式可求出t的值,再將t的值代入拋物線解析式即可;(3)求出直線AD的解析式,過點M作MN∥y軸,交AD于點N,則點M的坐標為(m,m2﹣2m﹣3),點N的坐標為(m,﹣m﹣2),用含m的代數式表示出△AMN的面積,配方后由二次函數的性質即可得出結論.【詳解】(2)∵拋物線y=x2+bx+c的對稱軸為x=2,∴2,∴b﹣=2.∵拋物線與y軸交于點C(0,﹣3),∴c=﹣3,∴拋物線的解析式為y=x2﹣2x﹣3,∴拋物線的對稱軸為直線x=2.∵點D與C關于拋物線的對稱軸對稱,∴點D的坐標為(2,﹣3);(2)當y=0時,x2﹣2x﹣3=0,解得:x2=﹣2,x2=3,∴點A的坐標為(﹣2,0),點B的坐標為(3,0),∴AB=3﹣(﹣2)=4,設點P的坐標為(s,t).∵△ABP的面積是8,∴AB?|yP|=8,即4|t|=8,∴t=±4,①當t=4時,s2﹣2s﹣3=4,解得:,s2=,s2=,∴點P的坐標為(,4)或(,4);②當t=﹣4時,s2﹣2s﹣3=﹣4,解得:,s2=s2=2,∴點P的坐標為(2,﹣4);綜上所述:當△ABP的面積是8時,點P的坐標為(,4)或(,4)或(2,﹣4);(3)設直線AD的解析式為y=kx+b2,將A(﹣2,0),D(2,﹣3)代入y=kx+b2,得:,解得:,∴直線AD的解析式為y=﹣x﹣2,過點M作MN∥y軸,交AD于點N.∵點M的橫坐標是m(﹣2<m<2),∴點M的坐標為(m,m2﹣2m﹣3),點N的坐標為(m,﹣m﹣2),∴MN=﹣m﹣2﹣(m2﹣2m﹣3)=﹣m2+m+2,∴S△AMD=S△AMN+S△DMNMN?(m+2)MN?(2﹣m)MN(﹣m2+m+2)(m)2,∵0,﹣22,∴當m時,S△AMD,∴當m時,△AMD的最大值為.【點睛】本題考查了待定系數法求解析式,二次函數的圖象及性質,函數的思想求最值等,解答本題的關鍵是注意分類討論思想在解題過程中的運用.20、(1)畫圖見解析;(2)畫圖見解析;(3)20【解析】(1)結合網格特點,連接OA并延長至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結合網格特點根據旋轉作圖的方法找到A2點,連接A2B1即可得;(3)根據網格特點可知四邊形AA1B1A2是正方形,求出邊長即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結合網格特點易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點睛】本題考查了作圖-位似變換,旋轉變換,能根據位似比、旋轉方向和旋轉角得到關鍵點的對應點是作圖的關鍵.21、(1)y=(4+x)(3+x)-12=x2+7x;(2)邊長增加1cm時,面積增加8cm2.【分析】(1)根據題意,借助于矩形面積,直接解答;(2)在(1)中,把y=8代入即可解答.【詳解】解:(1)由題意可得:(4+x)(3+x)-3×4=y,化簡得:y=x2+7x;(2)把y=8代入解析式y(tǒng)=x2+7x中得:x2+7x-8=0,解之得:x1=1,x2=-8(舍去).∴當邊長增加1cm時,面積增加8cm222、最大整數解為【分析】先求出不等式組的解集,根據不等式組的解集求出即可.【詳解】解:由①得:由②得:不等式組的解為:所以滿足范圍的最大整數解為【點睛】本題考查了解一元一次不等式組和一元一次不等式組的整數解的應用,關鍵是求出不等式組的解集.23、【分析】分析:第一項利用30°角的余弦值計算,第二項利用45°角的正弦值計算,第三項利用60°角的正切值計算,第四項按照絕對值的意義化簡,然后合并同類項或同類二次根式.【詳解】詳解:原式=2×﹣2×+3﹣1=﹣+3﹣1=4﹣1.點睛:本題考查了絕對值的意義和特殊角的三角函數值,熟記30°,45°,60°角的三角函數值是解答本題的關鍵.24、(1),理由見解析;(2)見解析【分析】(1)由四邊形AEFD是平行四邊形可得AD=EF,根據條件可證四邊形ABED是平行四邊形,四邊形AFCD是平行四邊形,所以AD=BE,AD=FC,所以AD=BC;(2)根據矩形的判定和定義,對角線相等的平行四邊形是矩形.只要證明AF=DE即可得出結論.【詳解】證明:(1)AD=BC理由如下:

∵AD∥BC,AB∥DE,AF∥DC,

∴四邊形ABED和四邊形AFCD都是平行四邊形.

∴AD=BE,AD=FC,

又∵四邊形AEFD是平行四邊形,

∴AD=EF.

∴AD=BE=EF=FC.∴;(2)證明:∵四邊形ABED和四邊形AFCD都是平行四邊形,

∴DE=AB,AF=DC.

∵AB=DC,

∴DE=AF.

又∵四邊形AEFD是平行四邊形,

∴平行四邊形AEFD是矩形.考點:1.平行四邊形的判定與性質;2.矩形的判定.25、該縣投入教育經

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論